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Abstract
Recurrent network models with a behavioral time-scale plasticity rule (BTSP) can encode
numerous spatial maps. Memory recall in these networks corresponds to the recovery of
a bump attractor within a specific environment. This process relies on the amplitude of
the spatial modulation (the first spatial Fourier mode) in the connectivity, which reflects
the environment’s topology. This amplitude is large for recently stored environments but
diminishes for older memories due to overwriting. The network’s storage capacity is defined
as the most remote memory for which the first spatial Fourier mode’s amplitude can still
trigger a Turing instability. Interestingly, interference between stored memories manifests
as a quenched variability term in the connectivity, which drives the Turing bifurcation to
lower amplitudes of the first spatial Fourier mode, thereby enhancing the network’s memory
capacity. However, this quenched variability also leads to the formation of shifted locations
for the Turing pattern, which might be undesirable for an unbiased spatial representation. We
explore this trade-off between enhanced memory capacity and memory bias using analytical
and numerical methods.
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1 INTRODUCTION

Understanding the mechanisms underlying memory storage and recall in the brain is a fundamental question in
neuroscience. Episodic memories, which are tied to specific events and contexts, can form after a single exposure
to new stimuli. A pivotal discovery in this field is the Behavioral Time-Scale Plasticity (BTSP), a form of synaptic
plasticity that facilitates one-shot learning. BTSP has been observed in place cells within the hippocampal CA1
region [1, 2], where synaptic weights are adjusted following a single traversal of an environment.

BTSP allows place cells to form or shift their place fields rapidly, typically after a single event marked by a
dendritic plateau potential (PP) in the postsynaptic cell. This rapid adjustment challenges traditional Hebbian
learning models, which rely on repeated pre- and postsynaptic pairings. Experimental evidence suggests that
BTSP enables synaptic potentiation and depression based on the temporal overlap of pre- and postsynaptic
activities, mediated by eligibility traces and instructive signals.

In modeling BTSP, Milstein et al. [1] developed a biophysical network model that incorporates the plasticity
rule induced by BTSP to describe synaptic updates. This network model demonstrates that BTSP can rapidly
reshape population activity in response to behavioral and environmental cues. In particular, they modeled BTSP
by considering a CA1 place cell receiving inputs from 𝑁 excitatory CA3 place cells uniformly distributed on a
circular track of length 𝐿.

It was assumed that a rat traverses a virtual linear track at a constant velocity 𝑣 , a line of length L , where it is
shown different simulated environments. When the rat reaches the end of the line, the end of the environment, it
is teleported back to the beginning of the environment. As the rat crossed a given location denoted by 𝑥𝑃𝑃 , a
plateau potential (PP) occurred either naturally (see [2]) or was artificially induced through intracellular current
injection. This PP is the phenomenon responsible for BTSP plasticity updates, facilitating one-shot learning of
the virtual environments.

The synaptic update rule from the biophysical model was successfully reduced to a 1D map by Roxin and
Lin [3], enabling analytical study of the connectivity and the network dynamics. Furthermore, this 1D map
was extended to recurrent networks, unlike the feedforward setup from Milstein et al., aiming to understand
how BTSP may influence the CA3 region of the hippocampus, particularly in the context of studying memory
formation. This resulting 1D map update rule accounts for the influences of both potentiation and depression and
is expressed as

𝑤𝑛
𝑖 𝑗 = 𝑤𝑛−1

𝑖 𝑗 +
(
𝑃 ·

(
1 −𝑤𝑛−1

𝑖 𝑗

)
𝑓𝑃

(
Δ𝜃𝑛𝑖 𝑗

)
− 𝐷 ·𝑤𝑛−1

𝑖 𝑗 · 𝑓𝐷
(
Δ𝜃𝑛𝑖 𝑗

))
𝑆𝑛𝑖 𝑆

𝑛
𝑗 , (1)

where 𝑓𝑃 (𝜃 ) and 𝑓𝐷 (𝜃 ) denote the plasticity functions for potentiation and depression, respectively, with 𝑃 and
𝐷 being the corresponding learning rates. Additionally, 𝑆𝑛𝑖 and 𝑆𝑛𝑗 are binary indicators (modeled as Bernoulli
random variables) of neuronal activity in a given environment 𝑛, ensuring that synaptic weight updates occur
only when both neurons 𝑖 and 𝑗 are active simultaneously in environment 𝑛. The term Δ𝜃𝑛𝑖 𝑗 denotes the phase
difference between neuron 𝑖 and neuron 𝑗 . This arises from the dynamics being configured within a ring topology
framework, the reasoning for which will be explained soon.

The firing rate equations of the original network model are

𝜏
𝑑

𝑑𝑡
𝑟1 = −𝑟1 + 𝜙

(
1
𝜅𝑁

𝑀𝑁∑︁
𝑗=1

𝑤1𝑗𝑟 𝑗𝑆
𝑘
𝑗 + 𝐼0

)
𝑆𝑘1

𝜏
𝑑

𝑑𝑡
𝑟2 = −𝑟2 + 𝜙

(
1
𝜅𝑁

𝑀𝑁∑︁
𝑗=1

𝑤2𝑗𝑟 𝑗𝑆
𝑘
𝑗 + 𝐼0

)
𝑆𝑘2

...

𝜏
𝑑

𝑑𝑡
𝑟𝑖 = −𝑟𝑖 + 𝜙

(
1
𝜅𝑁

𝑀𝑁∑︁
𝑗=1

𝑤𝑖 𝑗𝑟 𝑗𝑆
𝑘
𝑗 + 𝐼0

)
𝑆𝑘𝑖

...

(2)
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where 𝑟𝑖 is the firing rate of cell 𝑖 , and 𝜙 is a nonlinear function. For simplicity, it is assumed that the external
drive 𝐼0 is the same for all neurons. The parameter 𝜅 sets how we scale the connectivity with respect to the size
of the neuronal population encoding each position.

Despite the comprehensiveness of this network model, it can be computationally intensive due to its complexity.
To address this, researchers have found that the recurrent network’s topology shaped by BTSP, when incorporating
sparse coding, can be approximated by a series of rings, one for each environment. Sparse coding is essential to
reduce interference between memories stored in the network. In a network where every neuron encodes a place
field for every environment, there would be maximal interference, making it difficult to distinguish between
different memories. Sparse coding mitigates this issue by ensuring that only a fraction 𝑠 of neurons are active as
place cells in any given environment.

In this regime of sparse coding: (1) Interference between different memories is minimized, and (2) The interfer-
ence that does occur is represented as quenched variability, which is random noise in the connectivity matrix and
is uncorrelated with the environment being analyzed.

Given the sparse-coding limit (i.e., when 𝑠 in 𝑆𝑛𝑖 ∼ Bern(𝑠) is sufficiently small), we can simplify the analysis of
memory capacity in the recurrent network. Instead of dealing with the full complexity of the network, we can
project the dynamics onto low-dimensional manifolds that correspond to past environments. This projection is
equivalent to representing each environment with a ring model. Each ring has a connectivity profile derived
analytically from the 1D map of BTSP.

𝜏
𝜕𝑟 (𝜃, 𝑡)

𝜕𝑡
= −𝑟 (𝜃, 𝑡) + 𝜙

(
1
2𝜋

∫ 𝜋

−𝜋
𝑊 (𝜃 − 𝜃 ′)𝑟 (𝜃 ′, 𝑡)𝑑𝜃 ′ + 𝐼0

)
The ring model restricts the dynamics to a low-dimensional manifold that represents spatial modulations within
an environment. In this approach, neurons are typically ordered according to their preferred place field in
environment 𝑛.

The network connectivity itself has highly complex structure, but when projected onto the subspaces corre-
sponding to different environments it is largely characterized by the mean correlation with that space, e.g. the
amplitude of the first Fourier coefficient, and the degree of quenched variability due to interference between
environments. Thus, in the ring model, the connectivity between neurons is approximated by a kernel function
that encapsulates the essential features of synaptic interactions observed in the network model. The connectivity
kernel is defined as

𝑊 (Δ𝜃 ) =𝑊0 +𝑊1 cos(Δ𝜃 ) + Δ𝑊𝑧 (Δ𝜃 ). (3)
Here,𝑊0 represents the baseline connectivity,𝑊1 cos(Δ𝜃 ) captures the spatial modulation of connectivity, and
Δ𝑊𝑧 (Δ𝜃 ) introduces quenched variability through a Gaussian random variable 𝑧. The amplitude of themodulation,
denoted by𝑊1, will be large for recently learned environments andwill decrease as new environments are explored.
This formulation allows the ring model to reflect the average synaptic weight and the variability introduced by
BTSP. This ring model, with its simplified yet robust connectivity function, provides an analytically tractable
framework to study these effects systematically.

Memory recall in neural networks can be conceptualized as the recovery of a bump attractor within a given
environment. To simulate this, we start by introducing a perturbed steady state as the initial input in a ring
network and observe whether a bump attractor forms. The formation of a bump attractor indicates successful
memory recall. After exploring multiple environments, the storage capacity of the network is defined as the
most remote memory for which the amplitude of the first spatial Fourier mode, the spatial modulation of a given
environment𝑊1, can still elicit a Turing instability.

To examine memory capacity, we will then analyze the range of spatial modulation values,𝑊1, that enable
the ring network to produce a bump. With the necessary background and motivation for studying this topic
established, we can proceed to the core of this thesis: investigating how introducing variability in neuronal
connectivity affects memory storage capacity in recurrent networks with BTSP plasticity.
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2 MATHEMATICAL MODELING AND ANALYSIS

2.1 Analytical Steady-State Solutions

Consider the ring model described by the equation

𝜏
𝜕𝑟 (𝜃, 𝑡)

𝜕𝑡
= −𝑟 (𝜃, 𝑡) + 𝜙

(
1
2𝜋

∫ 𝜋

−𝜋
𝑊 (𝜃 − 𝜃 ′)𝑟 (𝜃 ′, 𝑡)𝑑𝜃 ′ + 𝐼0

)
, (4)

where the connectivity kernel is given by𝑊 (Δ𝜃 ) =𝑊0 +𝑊1 cos(Δ𝜃 ) + Δ𝑊 (Δ𝜃 ).

Here,𝑊0 is the homogeneous synaptic connectivity,𝑊1 represents the spatially modulated connectivity, Δ𝑊 (Δ𝜃 )
represents the quenched variability, modeled as a white noise process that introduces random fluctuations
in synaptic connectivity. The parameter 𝐼0 is the external input to the system, and 𝜙 is a nonlinear function
characterizing the response of the neurons. Finally, 𝜏 represents the time constant of the neural system, often
assumed to be 1 for simplicity in calculations.

The quenched variability is introduced as a Gaussian noise process,

Δ𝑊 (𝜃 ) =
√︁
𝑉 (𝜃 )𝑧, 𝑧 ∼ 𝑁 (0, 1)

where 𝑉 (𝜃 ) is the variance of the memory trace. For context, this variance of the memory trace refers roughly to
how much the neural connections can vary when storing a particular memory. This variance is modeled as

𝑉 (𝜃 ) = 𝐴 + 𝐵 cos(𝜃 ) +𝐶 cos2 (𝜃 )

With quenched variability, each neuron features a distinct connectivity kernel, thereby disrupting spatial symme-
tries in the ring’s activity. In Figure 1, we plot the connectivity kernels of each neuron, versus the connectivity
without variability (which is identical for all the neurons).

Figure 1: Effect of quenched variability on neuronal connectivity kernels.

We start the analysis by considering the homogeneous steady states.

In the steady-state analysis, the influence of the spatial component𝑊1 vanishes because the cosine term
integrates to zero over a full period. Furthermore, given thatΔ𝑊 (𝜃 )) is defined as

√︁
𝑉 (𝜃 )𝑧, the quenched variability

is negated by the zero-mean characteristic of 𝑧, assuming its behavior is independent across 𝜃 . Consequently, the
steady-state equation simplifies to

𝑟0 = 𝜙

(
𝑟0

2𝜋

∫ 𝜋

−𝜋
𝑊0 +𝑊1 cos(𝜃 ′) + Δ𝑊 (𝜃 ′) 𝑑𝜃 ′ + 𝐼0

)
= 𝜙 (𝑟0𝑊0 + 𝐼0). (5)



The Role of Quenched Variability in Enhancing Memory Storage in Neuronal Networks VU Amsterdam, North Holland, The Netherlands

Here, 𝑟0 represents the activity of the homogeneous steady state. The stationary solutions for the steady-state
firing rate 𝑟0 are determined by the equation given in (5). In our study, we define the nonlinearity 𝜙 using the
following piecewise function

𝜙 (𝑥) =


𝑥2 for 0 ≤ 𝑥 ≤ 1,

2
√︃
𝑥 − 3

4 for 𝑥 > 1,
0 otherwise.

Depending on the value of the input 𝐼0 and the coupling𝑊0, the steady-state solutions are then given as
follows

• For the range 0 ≤ 𝑟0𝑊0 + 𝐼0 ≤ 1

𝑟0 =
1 − 2𝑊0𝐼0 ±

√
1 − 4𝑊0𝐼0

2𝑊 2
0

.

• For the case where 𝑟0𝑊0 + 𝐼0 > 1

𝑟0 = 2𝑊0 ± 2
√︂
𝑊 2

0 + 𝐼0 −
3
4
.

We could have chosen to analytically determine the bounds of these solutions. However, as this task is non-
trivial and not the central focus of this thesis, we opted to hardcode masks (see the function code in Appendix C)
in the code to directly compute the solutions.

In Figure 2, we observe the solutions for different𝑊0 and 𝐼0 parameter values. The key insight for subsequent
coding is that with𝑊0 negative, only one steady-state solution exists, denoted as 𝑟02 in the code. Figure 2 presents
only two scenarios; readers are encouraged to explore other solutions by adjusting the parameters themselves.
This can be done by using the Jupyter notebooks in this link. Once the stationary solutions are identified, we
advance to a more intriguing aspect of the study: the linear stability analysis of these solutions.

(a) At𝑊0 = −1, 𝐼0 = 0.2 (b) At𝑊0 = 0.9, 𝐼0 = 0.2

Figure 2: Steady-State Solutions for different𝑊0 and 𝐼0 parameter values.

https://github.com/antoniofrancaib/quenched-variability-role
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2.2 Deterministic Model: Analysis Without Quenched Variability

The process of linear stability analysis involves evaluating the stability of a steady state by analyzing the response
of the system to small perturbations. In this context, we first analyze the deterministic case of the ring model
described by equation (4). Subsequently, we explore the stochastic scenario, incorporating variability, with the
primary objective of examining the differences in memory storage capacity. In the deterministic scenario, the
model excludes the quenched variability from the connectivity, providing a simplified framework to understand
the baseline dynamics of the system.

Next, we consider small perturbations around these steady states

𝑟 (𝜃, 𝑡) = 𝑟0 + 𝛿𝑟0𝑒
𝜆0𝑡 + 𝛿𝑟1 cos(𝜃 )𝑒𝜆1𝑡 (6)

This perturbation includes a uniform part 𝛿𝑟0𝑒𝜆0𝑡 and a spatially modulated part 𝛿𝑟1 cos(𝜃 )𝑒𝜆1𝑡 , where 𝛿𝑟0 and
𝛿𝑟1 are small amplitudes of perturbation, and 𝜆0 and 𝜆1 are the growth rates of these perturbations.

By integrating over the population, we observe
1
2𝜋

∫ 𝜋

−𝜋
(𝑊0 +𝑊1 cos(𝜃 − 𝜃 ′)) (𝑟0 + 𝛿𝑟0𝑒

𝜆0𝑡 + 𝛿𝑟1 cos(𝜃 ′)𝑒𝜆1𝑡 )𝑑𝜃 ′ =𝑊0𝑟0 +𝑊0𝛿𝑟0𝑒
𝜆0𝑡 + 𝑊1

2
𝛿𝑟1 cos(𝜃 )𝑒𝜆1𝑡 . (7)

We then plug the perturbation 6 into the ring model equation, assuming 𝜏 = 1 for simplicity. By linearizing the
nonlinearity 𝜙 around𝑊0𝑟0 + 𝐼0, we obtain the following expression for the time evolution of the perturbations

𝜆0𝛿𝑟0𝑒
𝜆0𝑡 + 𝜆1𝛿𝑟1 cos(𝜃 )𝑒𝜆1𝑡 = −

(
𝑟0 + 𝛿𝑟0𝑒

𝜆0𝑡 + 𝛿𝑟1 cos(𝜃 )𝑒𝜆1𝑡
)

+ 𝜙 (𝑟0𝑊0 + 𝐼0) + 𝜙 ′ (𝑟0𝑊0 + 𝐼0)
(
𝑊0𝛿𝑟0𝑒

𝜆0𝑡 + 𝑊1𝛿𝑟1 cos(𝜃 )𝑒𝜆1𝑡
2

)
.

By equating the terms corresponding to 𝜆0 and 𝜆1 to each other, and utilizing the condition−𝑟0+𝜙 (𝑟0𝑊0 + 𝐼0) = 0,
we can solve for the growth rates

𝜆0 = −1 + 𝜙 ′
0𝑊0,

and
𝜆1 = −1 + 𝜙 ′

0
𝑊1

2
,

where 𝜙 ′
0 is the slope of the transfer function evaluated at the steady state.

To ensure the stability of the steady state and to avoid uniform instability, the homogeneous synaptic
connectivity𝑊0 must satisfy

𝑊0 <
1
𝜙 ′
0
.

Finally, we determine the critical value of the spatially modulated connectivity𝑊1, denoted as𝑊 𝑐𝑟
1 , beyond

which the steady state becomes unstable to spatial perturbations

𝑊 𝑐𝑟
1 =

2
𝜙 ′
0
.

We numerically validate these theoretical results in Section 3.2, and Section-3.4.



The Role of Quenched Variability in Enhancing Memory Storage in Neuronal Networks VU Amsterdam, North Holland, The Netherlands

2.3 Fourier Series and Statistics

Having analyzed the deterministic case of the ring model, we now turn to the main focus of this thesis: exploring
the role of quenched variability in enhancing memory storage within neuronal networks.

Consider the stochastic variant of the ring model, where the connectivity kernel function is now given by

𝑊 (Δ𝜃 ) =𝑊0 +𝑊1 cos(Δ𝜃 ) + Δ𝑊 (Δ𝜃 ).
Recall that𝑊0 represents the homogeneous synaptic connectivity,𝑊1 signifies spatially modulated connectivity,
and Δ𝑊 (𝜃 ) denotes the quenched variability in connectivity.

The quenched variability in the model is introduced as a Gaussian noise process, defined by

Δ𝑊 (𝜃 ) =
√︁
𝑉 (𝜃 )𝑧,

where 𝑧 is a zero-mean Gaussian random variable with unit variance, and𝑉 (𝜃 ), the variance of the memory trace,
is expressed as

𝑉 (𝜃 ) = 𝐴 + 𝐵 cos(𝜃 ) +𝐶 cos2 (𝜃 ) = 𝐴 + 𝐶

2
+ 𝐵 cos(𝜃 ) + 𝐶

2
cos(2𝜃 ). (8)

Expressing Δ𝑊 (𝜃 ) in terms of its Fourier series, we note that since Δ𝑊 (𝜃 ) is real-valued, the complex coeffi-
cients of the Fourier series satisfy 𝑐− 𝑗 = 𝑐 𝑗 , and 𝑐0 = 0 due to 𝑧 being zero-mean. The Fourier series of Δ𝑊 (𝜃 )
is

Δ𝑊 (𝜃 ) =
∞∑︁

𝑗=−∞
𝑐 𝑗𝑒

𝑖 𝑗𝜃 = 𝑐0 +
∞∑︁
𝑗=1

(𝑐 𝑗𝑒𝑖 𝑗𝜃 + 𝑐− 𝑗𝑒
−𝑖 𝑗𝜃 )

=

∞∑︁
𝑗=1

(𝛼 𝑗 − 𝑖𝛽 𝑗 ) (cos( 𝑗𝜃 ) + 𝑖 sin( 𝑗𝜃 )) + (𝛼 𝑗 + 𝑖𝛽 𝑗 ) (cos( 𝑗𝜃 ) − 𝑖 sin( 𝑗𝜃 )),

which simplifies to the real Fourier series of Δ𝑊 (𝜃 )

Δ𝑊 (𝜃 ) = 2
𝑁∑︁
𝑗=1

𝛼 𝑗 cos( 𝑗𝜃 ) + 𝛽 𝑗 sin( 𝑗𝜃 ), (9)

where we truncate the series at 𝑁 (neuron populations) since higher harmonics would correspond to spatial
frequencies not supported by the discrete nature of the neuron populations. I made an insightful simulation to
illustrate this concept in a Jupyter notebook, which is available in the GitHub repository for this thesis.

Because the variability is a zero-mean Gaussian process, the coefficients 𝛼 𝑗 and 𝛽 𝑗 are also zero-mean Gaussian
random variables whose variances and covariances must be determined self-consistently. We do this through
appropriate averaging. Specifically, we calculate

𝑉 (𝜃 ) = ⟨Δ𝑊 (𝜃 )2⟩ = 4

〈(
𝑁∑︁
𝑗=1

𝛼 𝑗 cos( 𝑗𝜃 ) + 𝛽 𝑗 sin( 𝑗𝜃 )
) (

𝑁∑︁
𝑙=1

𝛼𝑙 cos(𝑙𝜃 ) + 𝛽𝑙 sin(𝑙𝜃 )
)〉

.

Expanding this and assuming independence between 𝛼 𝑗 and 𝛽 𝑗 (hence ⟨𝛼 𝑗𝛽𝑙 ⟩ = 0), we find

𝑉 (𝜃 ) = 4
𝑁∑︁
𝑗=1

𝑁∑︁
𝑙=1

(
⟨𝛼 𝑗𝛼𝑙 ⟩ cos( 𝑗𝜃 ) cos(𝑙𝜃 ) + ⟨𝛽 𝑗𝛽𝑙 ⟩ sin( 𝑗𝜃 ) sin(𝑙𝜃 )

)
,

where the covariances ⟨𝛼 𝑗𝛽𝑙 ⟩ cancel out. Utilizing trigonometric identities, 𝑉 (𝜃 ) simplifies to

𝑉 (𝜃 ) = 2
𝑁∑︁
𝑗=1

𝑁∑︁
𝑙=1

(
⟨𝛼 𝑗𝛼𝑙 ⟩ + ⟨𝛽 𝑗𝛽𝑙 ⟩

)
cos(( 𝑗 − 𝑙)𝜃 ) + 2

𝑁∑︁
𝑗=1

𝑁∑︁
𝑙=1

(
⟨𝛼 𝑗𝛼𝑙 ⟩ − ⟨𝛽 𝑗𝛽𝑙 ⟩

)
cos(( 𝑗 + 𝑙)𝜃 ) (10)

We can determine some of the coefficients in Equation-10 by employing the expressions for 𝑉 (𝜃 ) given in
Equations 8 and 10, supplemented with additional analytical methods. For detailed calculations, please refer to
Appendix A.

https://github.com/antoniofrancaib/quenched-variability-role
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The analytical solutions resulting in coefficients of interest are summarized as follows

⟨𝛼2
1⟩ =

1
2𝑁

(
𝐴 + 3𝐶

4

)
,

⟨𝛽21⟩ =
1
2𝑁

(
𝐴 + 𝐶

4

)
,

⟨𝛼2
𝑗 ⟩ = ⟨𝛽2𝑗 ⟩ =

1
2𝑁

(
𝐴 + 𝐶

2

)
for 𝑗 ≠ 1,

⟨𝛼 𝑗𝛼 𝑗+1⟩ = ⟨𝛽 𝑗𝛽 𝑗+1⟩ =
𝐵

4𝑁
,

⟨𝛼 𝑗𝛼 𝑗+2⟩ = ⟨𝛽 𝑗𝛽 𝑗+2⟩ =
𝐶

8𝑁
.

A comparison of these theoretical findings with numerical simulations of a quenched Gaussian white-noise
process are presented in Section-3.3.

With this knowledge in hand, we can compute the amplitudes and phases of the different modes in the Fourier
series representation of the quenched variability in the connectivity kernel. We have

𝑊 (𝜃 ) =𝑊0 +𝑊1 cos(𝜃 ) + Δ𝑊 (𝜃 ) =𝑊0 +𝑊1 cos(𝜃 ) + 2
𝑁∑︁
𝑗=1

𝛼 𝑗 cos( 𝑗𝜃 ) + 𝛽 𝑗 sin( 𝑗𝜃 ),

which can be re-expressed as

𝑊 (𝜃 ) =𝑊0 +𝑊1 cos(𝜃 ) +
𝑁∑︁
𝑗=1

𝑅 𝑗 cos( 𝑗𝜃 +𝜓 𝑗 ),

where 𝑅 𝑗 and 𝜓 𝑗 are the amplitude and phase of the modes, respectively. These are derived from the Fourier
coefficients 𝛼 𝑗 and 𝛽 𝑗 , with

𝑅 𝑗 = 2
√︃
𝛼2
𝑗
+ 𝛽2

𝑗
,

𝜓 𝑗 = arctan
(
𝛽 𝑗

𝛼 𝑗

)
.

Given that 𝛼 𝑗 and 𝛽 𝑗 are zero-mean Gaussian variables with the specified variances and covariances, we can
denote their complete distributions using a multivariate normal distribution. For simplicity, let’s consider a vector
X that contains all 𝛼 𝑗 and 𝛽 𝑗

X𝑇 =
(
𝛼1 𝛼2 · · · 𝛼𝑁 𝛽1 𝛽2 · · · 𝛽𝑁

)
.

Since 𝛼 𝑗 and 𝛽 𝑗 are zero-mean, the mean vector 𝜇 is 𝜇 = 0. The covariance matrix Σ for X can be constructed as
follows

Σ =

(
Σ𝛼 0
0 Σ𝛽

)
where Σ𝛼 and Σ𝛽 are the covariance matrices for 𝛼 𝑗 and 𝛽 𝑗 respectively. Given the variances and covariances,
these matrices will have the following form. For Σ𝛼

Σ𝛼 =
1
2𝑁

©«

𝐴 + 3𝐶
4

𝐵
2

𝐶
4 # · · · #

𝐵
2 𝐴 + 𝐶

2
𝐵
2

𝐶
4 · · · #

𝐶
4

𝐵
2 𝐴 + 𝐶

2
𝐵
2 · · · #

# 𝐶
4

𝐵
2 𝐴 + 𝐶

2 · · · #
...

...
...

...
. . .

...

# # # # · · · 𝐴 + 𝐶
2

ª®®®®®®®®¬
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Similarly for Σ𝛽

Σ𝛽 =
1
2𝑁

©«

𝐴 + 𝐶
4

𝐵
2

𝐶
4 # · · · #

𝐵
2 𝐴 + 𝐶

2
𝐵
2

𝐶
4 · · · #

𝐶
4

𝐵
2 𝐴 + 𝐶

2
𝐵
2 · · · #

# 𝐶
4

𝐵
2 𝐴 + 𝐶

2 · · · #
...

...
...

...
. . .

...

# # # # · · · 𝐴 + 𝐶
2

ª®®®®®®®®¬
So, the joint distribution of X is given by

X ∼ N(0,Σ)

where Σ is the block diagonal matrix containing Σ𝛼 and Σ𝛽 .

With this foundational knowledge, we deduce the distributions for 𝑅 𝑗 and 𝜓 𝑗 . These derivations are
elaborated upon in Appendix B, where we establish

𝑅 𝑗 ∼ Rayleigh ©«2 ·
√︄
𝐴 + 𝐶

2
𝑁

ª®¬ ,
tan(𝜓 𝑗 ) =

𝛽 𝑗

𝛼 𝑗

∼ Cauchy
©«0,

√︃
⟨𝛽2

𝑗
⟩√︃

⟨𝛼2
𝑗
⟩

ª®®¬ ,
which implies that

𝜓 𝑗 = arctan
(
𝛽 𝑗

𝛼 𝑗

)
∼ Uniform

(
−𝜋
2
,
𝜋

2

)
if ⟨𝛼2

𝑗 ⟩ = ⟨𝛽2𝑗 ⟩.

This last condition is satisfied for all 𝑗 ≠ 1, as previously derived, but also for 𝑗 = 1 when 𝐶 = 0. We verify
these theoretical distributions by simulating them experimentally in Section-3.3.

2.4 Stochastic Model: Impact of Quenched Variability

The inherent randomness of the system, known as quenched variability, does not depend on the number of
positions, denoted by 𝑁 . However, the impact of this variability on the system’s modes diminishes inversely with
𝑁 , following a 1/𝑁 pattern. This implies that near instabilities associated with spatially modulated modes, the
magnitude of 𝑁 becomes crucial. Remarkably, as 𝑁 approaches infinity, the system mimics a condition devoid of
noise, maintaining the total power of the quenched variability intact. Conversely, when 𝑁 is finite, any spatial
bifurcation in the system will be shifted.

In analyzing Turing bifurcations, we can determine their impact analytically. Specifically, the connectivity
pattern for a given cell 𝑖 is expressed as

𝑊 (𝜃𝑖 − 𝜃 𝑗 ) =𝑊0 +𝑊1 cos(𝜃𝑖 − 𝜃 𝑗 ) +
√︃
𝑉 (𝜃𝑖 − 𝜃 𝑗 )𝑧 (𝜃𝑖 − 𝜃 𝑗 ).

It is important to recall that the variable 𝑧 varies for each neuron pair (𝑖, 𝑗). To assess how the bifurcation shifts,
we need to isolate the part of variability that aligns with the cosine mode.

The reason is that quenched variability contributes to the amplitude of modulation in this relevant mode
for instability. The integral of higher harmonic terms of the form 𝑅 𝑗 cos( 𝑗𝜃 + 𝜙 𝑗 ) will yield terms involving
cos( 𝑗𝜃 + 𝜙 𝑗 ). When these are integrated against cos(𝜃 ) perturbation, they yield zero unless 𝑗 = 1, given the
orthogonality of cosine functions at different frequencies over a symmetric interval.
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On average, the quenched variability will then contribute an amplitude ⟨𝑅1⟩ to the connectivity. Given we
know the distribution of 𝑅 𝑗 for all modes, we easily estimate

⟨𝑅1⟩ =
√︂

𝜋

2𝑁
(𝐴 + 𝐶

2
).

However the phase is also important. If𝜓 = 0 then the quenched variability will add to𝑊1 and make an instability
more likely. However, if𝜓 = 𝜋 then the quenched variability will have the opposite effect and make an instability
less likely. Given that there is a distinct phase 𝜓 for each neuron in the network, if 𝑁 is large enough we can
expect that for some of them𝜓 ∼ 0. The quenched variability therefore always makes the instability more likely,
shifting the bifurcation to lower values of𝑊1.

To calculate the new critical value analitycally, we assume then 𝜓 = 0 for simplicity, and use the expected
value 𝑅1 in the calculations. Analogously to what we did in Equation 7, we see

1
2𝜋

∫ 𝜋

−𝜋

𝑁∑︁
𝑗=1

⟨𝑅 𝑗 ⟩ cos( 𝑗 (𝜃 − 𝜃 ′)) (𝑟0 + 𝛿𝑟0𝑒
𝜆0𝑡 + 𝛿𝑟1 cos(𝜃 ′)𝑒𝜆1𝑡 ) 𝑑𝜃 ′ =

⟨𝑅1⟩𝛿𝑟1𝑒𝜆1𝑡 cos(𝜃 )
2

.

and this holds because we can interchange the integral and the summation, as the series converges, the integration
and summation are both well-defined, and the integral operator is linear.

If we then plug the perturbation, under the new connectivity kernel with variability, we obtain

𝜆0𝛿𝑟0𝑒
𝜆0𝑡 + 𝜆1𝛿𝑟1 cos(𝜃 )𝑒𝜆1𝑡 = −

(
𝑟0 + 𝛿𝑟0𝑒

𝜆0𝑡 + 𝛿𝑟1 cos(𝜃 )𝑒𝜆1𝑡
)

+ 𝜙 (𝑟0𝑊0 + 𝐼0) + 𝜙 ′ (𝑟0𝑊0 + 𝐼0)
(
𝑊0𝛿𝑟0𝑒

𝜆0𝑡 + 𝑊1𝛿𝑟1 cos(𝜃 )𝑒𝜆1𝑡
2

+ ⟨𝑅1⟩𝛿𝑟1𝑒𝜆1𝑡 cos(𝜃 )
2

)
,

and this yields the same critical value for𝑊0 due to the coefficient 𝑐0 being zero, and a new growth rate for 𝜆1

𝜆1 = −1 +
𝜙 ′
0
2
𝑊1 +

𝜙 ′
0
2
⟨𝑅1⟩

which yields a new critical value
𝑊 cr

1 =
2
𝜙 ′
0
− ⟨𝑅1⟩.

This equation indicates that the Turing bifurcation, leading to a bump instability, will occur at lower values of
𝑊1 than in the case without quenched variability. We validate these theoretical results in Section 3.4, presenting
bifurcation diagrams that explore the conditions under which𝑊1 induces a Turing bifurcation, i.e., the formation
of a bump.
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3 NUMERICAL SIMULATIONS AND EXPERIMENTS

3.1 Computational Simulation of the Neural Field Model

For the numerical analysis, we employ the Finite-Elements Collocation Method to simulate the neural field model.

The continuous ring model is described by the following integro-differential equation
𝜕𝑟 (𝜃, 𝑡)

𝜕𝑡
= −𝑟 (𝜃, 𝑡) + 𝜙

(
1
2𝜋

∫ 𝜋

−𝜋
𝑊 (𝜃 − 𝜃 ′)𝑟 (𝜃 ′, 𝑡) 𝑑𝜃 ′ + 𝐼0

)
, (11)

where 𝑟 (𝜃, 𝑡) represents the activity at phase 𝜃 and time 𝑡 , 𝜙 is the nonlinear function,𝑊 (𝜃−𝜃 ′) is the connectivity
kernel, and 𝐼0 is the external input.

We discretize the domain using the collocation method with 𝑁 nodes, corresponding to different neurons.
This discretization generates collocation points {𝜃𝑖 such that 𝜃𝑖 = −𝜋 + 2𝜋

𝑁
𝑖;∀𝑖 ∈ {1, 2, . . . , 𝑁 }}, evenly spaced by

Δ𝜃 = 2𝜋
𝑁−1 . At these points, the original equation holds

𝜕𝑟 (𝜃𝑖 , 𝑡)
𝜕𝑡

= −𝑟 (𝜃𝑖 , 𝑡) + 𝜙

(
1
2𝜋

∫ 𝜋

−𝜋
𝑊 (𝜃𝑖 − 𝜃 ′)𝑟 (𝜃 ′, 𝑡) 𝑑𝜃 ′ + 𝐼0

)
.

We approximate the integral using the composite trapezoidal rule 1, expressed as

1
2𝜋

∫ 𝜋

−𝜋
𝑊 (𝜃𝑖 − 𝜃 ′)𝑟 (𝜃 ′, 𝑡) 𝑑𝜃 ′ ≈

𝑁∑︁
𝑗=1

𝑊 (𝜃𝑖 − 𝜃 𝑗 )𝑅 𝑗 (𝑡)𝑝 𝑗

Δ𝜃

2𝜋
, (12)

where 𝑅 𝑗 (𝑡) represents the activity at collocation points, and 𝑝 𝑗 are integration weights, set to 1
2 at endpoints and

1 otherwise. As shown in [4], this trapezoidal formula is second-order accurate with respect to Δ𝜃 , which means
that the error in the approximation decreases quadratically as the step size decreases.

The differential equation at each collocation point is then approximated by:

𝜕𝑅𝑖 (𝑡)
𝜕𝑡

= −𝑅𝑖 (𝑡) + 𝜙

(
𝑁∑︁
𝑗=1

𝑊 (𝜃𝑖 − 𝜃 𝑗 )𝑅 𝑗 (𝑡)
𝑝 𝑗

𝑁 − 1
+ 𝐼0

)
,

and expressed in matrix form as
𝑑R(𝑡)
𝑑𝑡

= −R(𝑡) + 𝜙 (MR(𝑡) + 𝐼0), (13)

where M is the matrix with elements𝑀𝑖 𝑗 =𝑊 (𝜃𝑖 , 𝜃 𝑗 ) ·
𝑝 𝑗

𝑁−1 .

Finally, this system of ordinary differential equations is solved numerically using a solver such as solve_ivp
in Python to track the temporal evolution of the network’s activity.

1The composite trapezoidal rule employs piecewise-linear interpolations at the collocation points.
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3.2 Evaluation of Uniform Stability

In this section, we explore the stability conditions for homogeneous synaptic connectivity denoted by 𝑊0.
According to our theoretical framework, for uniform stability,𝑊0 must satisfy the following inequality

𝑊0 <
1

𝜙 ′ (𝑊0)
.

This condition is derived and discussed extensively in Section 2.2.

To empirically validate this theoretical condition, we constructed bifurcation diagrams. These diagrams visually
represent the solutions 𝑟0 as functions of𝑊0 for fixed values of the external input 𝐼0.

(a) At 𝐼0 = 0.0 (b) At 𝐼0 = 0.15

(c) At 𝐼0 = 0.5 (d) At 𝐼0 = 0.75

Figure 3: Bifurcation diagrams illustrating the𝑊0 parameter across different 𝐼0 values.

Each diagram is color-coded to differentiate between stable and unstable solutions—red for unstable and black
for stable. Our observations confirm that solutions derived from r_02 and r_03 are inherently stable under the
parameters specified in the code.

The plotted dots represent the end points of a numerical simulation that solves the dynamic equation
𝑑𝑟0

𝑑𝑡
= −𝑟0 + 𝜙 (𝑊0𝑟0 + 𝐼0).

These simulations start from theoretical solution points, and their trajectories indicate the accuracy of our
theoretical predictions. Specifically, the dots that align with stable theoretical predictions remain close to their
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initial conditions, confirming the equilibrium’s stability. In the case of unstable solutions, the inherent numerical
instabilities caused by the finite precision of computer arithmetic can significantly alter trajectories, causing
some of them to diverge from their theoretical paths. This divergence has been observed in certain cases, leading
us to omit the simulated end points for unstable solutions from our plots.

We encourage readers to explore these dynamics further by including the data points for the unstable r_01 and
r_04 solutions in the plots. Additionally, slight modifications to the initial conditions in the select_and_solve
function, available in the common_utils.py module, can provide deeper insights into the behavior of these
unstable solutions.

We invite readers to engage with the interactive simulation provided in the Github repository of the thesis.
This tool offers a dynamic visualization of how the bifurcation diagrams evolve with changes in 𝐼0, providing an
intuitive understanding of the system’s behavior under varying external conditions.

3.3 Analysis of Fourier Statistics

In this section, we provide numerical support for the theoretical derivations discussed in Section 2.3. The following
graphs compare theoretical predictions (represented by lines) with numerical simulations across different values
of 𝐵, or 𝐶 , respectively. The dots represent averages of 10,000 realizations of a quenched, Gaussian white noise
process with variance 𝑉𝜃 .

(a) Parameters are 𝐴 = 1, 𝐶 = 1, and 𝑁 = 64. (b) Parameters 𝐴 = 1, 𝐵 = 0, and 𝑁 = 64

Figure 4: Numerical experimental validations of theoretical predictions.

After verifying this, we examine the probability distributions previously discussed. Specifically, we focus on
the first mode, as it is relevant for instability. We confirm that 𝛼1 and 𝛽1 are zero-mean, normally distributed with
the calculated variances. Additionally, we check the distributions of the amplitudes and phases for the first mode.

Figure 5: Histograms of 𝛼1 and 𝛽1 with overlaid normal distributions indicating expected variances.

https://github.com/antoniofrancaib/quenched-variability-role
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Figure 6: Distribution of 𝑅1 and𝜓1 with 𝐶 = 0. Figure 7: Distribution of 𝑅1 and𝜓1 with 𝐶 = 10.

In addition to verifying the analytical distributions, a key insight from this analysis is that increasing 𝐶 makes
it more likely for the phase of the first mode to be close to zero. Heuristically, neurons with smaller phases in the
first mode are more likely to form bumps. Thus, as 𝐶 increases, there will be more neurons with phases closer to
zero, leading to less bias in the network and fewer chances to form hotspots.

Initially, we might hypothesize that we could monotonically decrease the variance, and in the limit of 𝐶 → ∞,
the probability of sampling zero would be one, resulting in no hotspots in the network. However, this hypothesis
turns out to be incorrect, as the variance plateaus as a function of𝐶 . Therefore, this reasoning is invalid according
to this heuristic.

Figure 8: The variance of𝜓1 initially decreases but eventually plateaus.

3.4 Assessment of Spatial Stability

In this section, we provide numerical support for the theoretical derivations discussed in Section 2.2 and 2.4
regarding the spatial stability conditions. Remember that we had obtained for the case without quenched variability,
the critical value

𝑊 𝑐𝑟
1 =

2
𝜙 ′
0

and for the case with quenched variability,

𝑊 𝑐𝑟
1 =

2
𝜙 ′
0
− ⟨𝑅1⟩

where ⟨𝑅1⟩ is the expected value of the first amplitude in the Fourier series.

For this experiment, we basically simulate the ring dynamics for different values of𝑊1, and get the amplitude
of the bump that is formed at the final timestep. Amplitude zero indicates no bump was formed.
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We first observe for the deterministic case that the numerical experiments agree with the theoretical results. In
particular, for values greater than the critical a Turing bifurcation happens, i.e. a bump forms.

Figure 9: Bifurcation diagram for𝑊1 with𝑊0 = −20 and 𝐼0 = 1.5.

We also observe that there is two kinds of bumps, one of greater amplitude and one smaller which is the one
we try to look at in the picture, thus the motivation for choosing𝑊0 so small, in order to get only the small bump
even for𝑊1 big. Note this is not that relevant for our purpose, as we take the amplitude interested in studying
whether a bump forms or not, and not to see how big the amplitude is.

Including simulations with variability in our numerical experiments allows us to compare the two scenarios.
This effect is illustrated in Figure 10. Specifically, we observe that memory recovery is possible for lower values
of𝑊1 with variability, supporting the theoretical claim that variability enhances memory storage capacity.

Unlike the scenario without variability, each simulation with variability results in a different amplitude value.
Consequently, I performed 20 iterations for each𝑊1 value, plotting their mean (blue dots) with a 95% confidence
interval.

Figure 10: Bifurcation diagram for 𝐴 = 1, 𝐵 = 0, 𝐶 = 0.

The amplitude for the variability case is calculated using the function in Listing 3. In this scenario, even though
when no distinct bump is formed, the system reaches a noisy state resulting in a non-zero amplitude. However,
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for situations without a bump, we want this metric to be zero. Thus, I determined an appropriate threshold value
by visual inspection. For amplitudes below this threshold, the amplitude is set to zero.

Finally, we inspect how increasing noise reduces the critical value of𝑊1, both theoretically and in simulations. In
particular, we observe that this occurs in a monotonic manner, demonstrating that increasing noise monotonically
can enhance memory storage capacity.

Figure 11: How increasing the noise lowers the critical value of𝑊1.

For this section, we also include an interactive simulation where the reader can manipulate interactively the
value of𝑊1 and see the changes in dynamics. The Jupyter notebook for running simulations, can be found here.

3.5 On Hotspots

In the deterministic case, all bumps formed at phase zero. However, in the stochastic scenario, we observed
different phase shifts. Despite starting with a spatial perturbation centered at phase zero, the center of the final
activity profile shifted.

We investigated whether certain regions in the ring network, termed hotspots, were more likely to form bumps.
Our hypothesis was that neurons with smaller phases 𝜓1 and larger amplitudes 𝑅1 were more likely to form
bumps due to increased spatial perturbation from variability.

We tested this with 10,000 simulations, recording the phases of neurons with the three smallest 𝜓1 and the
phases where bumps formed. The results showed no clear correlation, indicating no causality. The same holds for
the three largest 𝑅1. I conducted more experiments on this but did not reach any relevant conclusions. Therefore,
I decided to leave this topic for future research, concluding that our heuristics might be incorrect.

(a) (b)

Figure 12: Phases of neurons with the three smallest𝜓1 and largest 𝑅1 compared to bump phases.

https://github.com/antoniofrancaib/quenched-variability-role
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4 CONCLUSION

In this thesis, we have explored the role of quenched variability in enhancing memory storage capacity within
recurrent neural networks. Our theoretical analysis and numerical simulations demonstrate that variability in the
connectivity can lower the critical threshold for memory recovery, effectively increasing the network’s storage
capacity. This result supports the hypothesis that incorporating variability into the system can be beneficial for
memory encoding and retrieval processes.

We have also investigated the impact of noise on the formation of memory bumps and the presence of hotspots
within the network. Our experiments show that increasing noise levels lead to a monotonic decrease in the
critical value of𝑊1, further confirming the capacity enhancement due to variability. However, our attempts to
identify specific regions within the ring network that are more likely to form bumps, termed hotspots, did not
yield any conclusive results. Despite extensive simulations, we found no clear correlation between the phases or
amplitudes of neurons and the formation of bumps, suggesting that our initial heuristics may need revision.

Future research should focus on studying and understanding the existence of hotspots in these ring networks.
Additionally, it is important to explore how these insights can enhance our understanding of brain dynamics.
Since this variability arises from the interference of different environments, it suggests that there may be an
optimal level of sparsity in environment encoding. Future work could involve developing analytical and numerical
methods to determine this optimal level and identify the factors it depends on.
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A DERIVATION OF THE STATISTICAL COEFFICIENTS

We note that

1
2𝜋

∫ 𝜋

−𝜋
⟨Δ𝑊 (𝜃 )2⟩𝑑𝜃 =

1
2𝜋

∫ 𝜋

−𝜋
𝑉 (𝜃 )𝑑𝜃 = 𝐴 + 𝐶

2
=

𝑁∑︁
𝑗=1

(
⟨𝛼2

𝑗 ⟩ + ⟨𝛽2𝑗 ⟩
)
, (14)

where the second equality comes from integrating 𝑉 (𝜃 ) as in 8, seeing that the terms with cos(𝜃 ) and cos(2𝜃 )
vanish if we integrate over a full period. The third equality comes from applying Parseval’s Theorem, using the
Fourier series expression 9.

We also see that

1
𝜋

∫ 𝜋

−𝜋
𝑉 (𝜃 ) cos𝜃𝑑𝜃 = 𝐵 = 2

𝑁−1∑︁
𝑗=1

(
⟨𝛼 𝑗𝛼 𝑗+1⟩ + ⟨𝛽 𝑗𝛽 𝑗+1⟩

)
, (15)

where we derived the first integral using the two different expressions for 𝑉 (𝜃 ), both as in 8 (first equality) and
10 (second equality).

Using a similar argument with 8 and 10, we also observe

1
𝜋

∫ 𝜋

−𝜋
𝑉 (𝜃 ) cos 2𝜃𝑑𝜃 =

𝐶

2
= 2

𝑁−2∑︁
𝑗=1

(
⟨𝛼 𝑗𝛼 𝑗+2⟩ + ⟨𝛽 𝑗𝛽 𝑗+2⟩

)
+ ⟨𝛼2

1⟩ − ⟨𝛽21⟩. (16)

From 14, and assuming that the power is distributed evenly amongst all N terms on the right hand side, as is
the case for a white noise process,

⟨𝛼2
1⟩ + ⟨𝛽21⟩ =

1
𝑁

(
𝐴 + 𝐶

2

)
,

⟨𝛼2
1⟩ − ⟨𝛽21⟩ =

𝐶

4𝑁
.

where the second relation arises due to the spatial inhomogeneity of the quenched variability.

Using these two equations, we derive expressions for ⟨𝛼2
1⟩ and ⟨𝛽21⟩ as follows:

⟨𝛼2
1⟩ =

1
2𝑁

(
𝐴 + 3𝐶

4

)
,

⟨𝛽21⟩ =
1
2𝑁

(
𝐴 + 𝐶

4

)
.

It is important to note that this second relation due to the spatial inhomogeneity of the quenched variability is
applicable only when 𝑗 = 1. For other indices 𝑗 ≠ 1, the expressions simplify to:

⟨𝛼2
𝑗 ⟩ = ⟨𝛽2𝑗 ⟩ =

1
2𝑁

(
𝐴 + 𝐶

2

)
.

For the correlations between consecutive coefficients, which are crucial for understanding the dynamics across
different terms of the series, we assume that the power is distributed evenly amongst all terms from 15. This
assumption leads to

⟨𝛼 𝑗𝛼 𝑗+1⟩ = ⟨𝛽 𝑗𝛽 𝑗+1⟩ =
𝐵

4𝑁
.

Similarly, using the same argument for Equation 16 demonstrates that

⟨𝛼 𝑗𝛼 𝑗+2⟩ = ⟨𝛽 𝑗𝛽 𝑗+2⟩ =
𝐶

8𝑁
,

highlighting the modulation effects not only for adjacent coefficients but also for those separated by one term.
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B DERIVATION OF THE DISTRIBUTION OF 𝑅 𝑗 AND𝜓 𝑗

Given that 𝑅 𝑗 = 2
√︃
𝛼2
𝑗
+ 𝛽2

𝑗
and 𝛼 𝑗 and 𝛽 𝑗 are zero-mean Gaussian random variables with variances ⟨𝛼2

𝑗 ⟩ and ⟨𝛽2𝑗 ⟩
respectively, we analyze the distribution of 𝑅 𝑗 as follows.

The expression 𝛼2
𝑗 + 𝛽2𝑗 represents the squared norm of a vector composed of Gaussian components. If 𝛼 𝑗 and

𝛽 𝑗 are independent, then 𝛼2
𝑗 and 𝛽

2
𝑗 are chi-squared distributed with 1 degree of freedom, scaled by their variances.

Each component 𝛼2
𝑗 and 𝛽2𝑗 can be described as scaled chi-squared variables

𝛼2
𝑗 ∼ ⟨𝛼2

𝑗 ⟩𝜒21 ,
𝛽2𝑗 ∼ ⟨𝛽2𝑗 ⟩𝜒21 .

The sum 𝛼2
𝑗 + 𝛽2𝑗 is then a chi-squared variable scaled by ⟨𝛼2

𝑗 ⟩ + ⟨𝛽2𝑗 ⟩,

𝛼2
𝑗 + 𝛽2𝑗 ∼ (⟨𝛼2

𝑗 ⟩ + ⟨𝛽2𝑗 ⟩)𝜒21 .

This is distributed according to a gamma distribution with 2 degrees of freedom. The square root of a chi-squared
variable,

√︃
𝛼2
𝑗
+ 𝛽2

𝑗
, follows a Rayleigh distribution.

Since 𝑅 𝑗 = 2
√︃
𝛼2
𝑗
+ 𝛽2

𝑗
, the scaling factor of 2 modifies the Rayleigh distribution to

𝑅 𝑗 ∼ Rayleigh
(
2 ·

√︃
⟨𝛼2

𝑗
⟩ + ⟨𝛽2

𝑗
⟩
)
= Rayleigh ©«2 ·

√︄
𝐴 + 𝐶

2
𝑁

ª®¬ for all 𝑗 .

On the other side, we analyze the distribution of𝜓 𝑗 under two cases.

If ⟨𝛼2
𝑗 ⟩ = ⟨𝛽2𝑗 ⟩, then the ratio 𝛽 𝑗

𝛼 𝑗
follows a standard Cauchy distribution due to the identical scaling of the

numerator and denominator by their Gaussian distributions

𝛽 𝑗

𝛼 𝑗

∼ Cauchy(0, 1).

The arctangent of a standard Cauchy distributed variable is uniformly distributed over the interval [−𝜋
2 ,

𝜋
2 ]

𝜓 𝑗 = arctan
(
𝛽 𝑗

𝛼 𝑗

)
∼ Uniform

(
−𝜋
2
,
𝜋

2

)
if ⟨𝛼2

𝑗 ⟩ = ⟨𝛽2𝑗 ⟩.

If ⟨𝛼2
𝑗 ⟩ ≠ ⟨𝛽2𝑗 ⟩, the ratio

𝛽 𝑗

𝛼 𝑗
follows a general Cauchy distribution with a scale parameter 𝛾 that depends on the

variances:

𝛾 =

√︃
⟨𝛽2

𝑗
⟩√︃

⟨𝛼2
𝑗
⟩
,

and thus

tan(𝜓 𝑗 ) =
𝛽 𝑗

𝛼 𝑗

∼ Cauchy
©«0,

√︃
⟨𝛽2

𝑗
⟩√︃

⟨𝛼2
𝑗
⟩

ª®®¬ = Cauchy ©«0,
√√

𝐴 + 𝐶
4

𝐴 + 3𝐶
4

ª®¬ if ⟨𝛼2
𝑗 ⟩ ≠ ⟨𝛽2𝑗 ⟩.
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C SUPPLEMENTARY CODE

Listing 1: Code to Filter Theoretically Derived Solutions Using a Tolerance Mask
def apply_mask(w0, I_0, r_func, tolerance=1e-4):

r_values = r_func(w0, I_0)
mask = np.isclose(r_values, nonlinearity(w0 * r_values + I_0), atol=tolerance)

r_values_filtered = np.where(mask, r_values, np.nan)
w0_filtered = np.where(mask, w0, np.nan)

return w0_filtered, r_values_filtered

Listing 2: Code to Simulate from Selected Initial Conditions and Evaluate their Stability.
def select_and_solve(w0, r_filtered, I_0, func):

non_nan_indices = ~np.isnan(r_filtered)
w0_non_nan = w0[non_nan_indices]

if len(w0_non_nan) == 0:
return np.array([]), np.array([])

indices_selected = np.linspace(0, len(w0_non_nan) - 1, min(len(w0_non_nan), 10), dtype=int)
w0_selected = w0_non_nan[indices_selected]
r_num = []
t_span = [0, 100]
t_eval = np.linspace(t_span[0], t_span[1], 2000)

for w0_val in w0_selected:
r0 = [func(w0_val, I_0)] # HERE: check stability by adding 0.01
sol = solve_ivp(dr_dt, t_span, r0, args=(w0_val, I_0), t_eval=t_eval, method='RK45')
r_num.append(sol.y[0, -1])

return w0_selected, r_num

Listing 3: Code to Get the Amplitude of the First Fourier Mode of the Final Activity Profile
def calculate_bump_amplitude(self, threshold = 0.2, filter_noise = False):

final_state = self.dynamics.y[:, -1]

fft_result = np.fft.fft(final_state)

first_mode_amplitude = np.abs(fft_result[1])

if filter_noise and first_mode_amplitude < threshold:
return 0

return first_mode_amplitude

The GitHub repository for this thesis, which includes all Python scripts for generating graphs and relevant
Jupyter notebooks for running simulations, can be found here.

https://github.com/antoniofrancaib/quenched-variability-role
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