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1 Introduction

The primary motivation of neuroscience is to understand how the brain stores and processes

information. Neuroscientists have observed several characteristic patterns of neural activity

that play a crucial role in how the brain makes this happen. These phenomena reflect the

complex and highly coordinated behavior of neural populations. Some of these patterns come

in the shape of neural oscillations [3, 10], propagating waves [4, 14], synchronized activity

[5], ”bursting” behavior [13], chaotic dynamics [8, 15], and ring attractors dynamics [6, 9],

among others.

On the other hand, applied mathematics provides us with sophisticated tools and method-

ologies, such as dynamical systems theory, that can be used to model and understand com-

plex systems. Dynamical systems theory, in particular, has proven to be a potent tool for

understanding the temporal evolution and behavior of neural systems. This intersection of

neuroscience and applied mathematics gives rise to the field of mathematical neuroscience.

The goal of mathematical neuroscience is to employ mathematical models and techniques to

understand the principles governing brain function, providing us with a systematic way to

translate biological observations into a theoretical framework.

In this context, the study of neural fields is of particular interest. Neural field equations

(NFEs) are mathematical models that describe the spatiotemporal dynamics of neural pop-

ulations in the brain assuming the cortical tissue is a continuous medium. Several types of

NFEs such as Wilson-Cowan Model [16], FitzHugh-Nagumo Model [7], or Nunez Model [11]

have been developed, each designed to capture different aspects of neural dynamics. How-

ever, along this exploration, we will consider one specific NFE type for some of its desirable

properties, concretely, the one introduced by Amari [1].

The Amari neural field model describes the evolution of neuron firing rates in a continuous
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field of neurons. The basic form of the Amari neural field model is as follows

∂tu(x, t) = −u(x, t) +
∫
Ω

ω(x, y)f(u(y, t))dy + I(x, t)

u(x, 0) = v(x)

(1)

with (x, t) ∈ Ω×R>0. Here, Ω represents the cortex, and v(x) is an initial profile function.

The notation u(x, t) represents the mean firing rate of the neurons at position x at time t.

The integral term represents the interaction between different neurons, where ω(x, y) is a

synaptic connectivity kernel describing the influence of the firing rate at position y on the

firing rate at position x. The function f(u) is a nonlinearity function, typically representing

a threshold effect: neurons do not fire unless their input is above a certain threshold. Finally,

I(x, t) is an external input applied to the neurons at position x at time t. Observe that this

set-up can be cast as a Cauchy problem on a Banach space.

Throughout this paper, we will introduce additional assumptions for the model. These

assumptions will balance the need for mathematical simplicity with the requirement for the

model to correspond reasonably well to reality. This paper is structured in the following

manner: Section 2 is dedicated to an exploration and theoretical analysis of the Amari

Neural Field Equation. In Section 3, we implement numerical methods to model a neural

field equation, and use it to find confirmation of the theoretical results drawn in the previous

section. Lastly, we will try to reproduce some of the experimental outcomes observed in a

relevant neuroscience paper.

2 Analytical Exploration

Consider the Amari neural field model, with same notation as in Equation 1, under the

following hypotheses

• The cortex Ω is an interval of the real line D = [−L,L] ⊂ R, with L = π.

• The homogeneous synaptic kernel is given by ω(z) = (1− |z|)e−|z|.

• The firing rate is a sigmoidal function

f(u) =
1

1 + exp(−µu)
, for µ = 10

• The external stimulus is null, I(x, t) ≡ 0.
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Let us briefly explain the motivation of the assumptions. We choose the cortical tissue

to be portrayed as a subspace of R for mathematical convenience. However, this assumption

still makes some correspondence to reality. We select L = π with the intention of using the

position x as a measure of angular orientation if we consider the brain as the topological

S1. We obtain this via reparametrization ϕ : [−π, π] → S1 using the mapping ϕ(x) =

(cos(x), sin(x)) which can easily be linked to a point in S1.

We assume the synaptic kernel to be w(z) = (1− |z|) e−|z|, as it satisfies some desirable

properties. In particular, w(z) is symmetric and portrays the idea of strong connections

for nearby neurons, pronounced inhibition at intermediate distances, and minor inhibitory

connections for neurons located at greater distances. This synaptic kernel corresponds to

strength connection in reality for neurons within small chunks of the brain.

The choice of the sigmoid function for the nonlinearity is motivated for several reasons.

It has been observed that neurons typically have a certain threshold of activation, below

which they do not fire and above which they fire at a constant rate. The sigmoid function,

with its S-shaped curve, provides a good mathematical model of this behavior. Furthermore,

this function is smooth, non-linear (which is crucial for learning as proven in deep neural

networks literature) and outputs a value between 0 and 1.

For the last assumption, we choose the external input function I(x, t) to be 0 for math-

ematical simplicity. Realistically, there exist an infinite array of diverse situations, and

defining I(x, t) for each can prove to be incredibly complex. Given these complexities, we

choose to examine the most straightforward situation, one in which the agent is entirely

isolated - devoid of any external stimuli like noise, vision (in darkness), and so forth.

2.1 Homogeneous Equilibrium Solutions

Once we introduced all the assumptions and, inspired by the principles of dynamical systems

theory, we will start the analytical study of Equation 1 as an average aspiring mathematician

would proceed, that is, by examining the homogeneous equilibrium of the model. To find

these equilibria, we set ∂tu(θ, t) = 0, which yields

u(x, t) =

∫
R

ω(x− y) f(u(y, t)) dy.

Since we are just looking for a homogeneous steady-state, we get rid of the dependence of

time and space, so that our equation becomes

u =

∫
R

ω(y) f(u) dy = f(u) ·W0.
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where W0 =
∫
R
ω(y) dy. Without loss of generality, we set W0 = 1 and get the iterated map

uk+1 = f(uk).

which will lead us to the fixed-point solution u∗ = f(u∗). Observe then that the solution of

the fixed point equation is given by the intersection between the sigmoidal function f(u) and

the straight linear function u. Thus, depending on the parameters, this fixed point equation

raises three distinct cases of interest: a state with one equilibrium close to zero, a state with

three distinct equilibria, and a state with one equilibrium close to one. We illustrate these

three scenarios in Figure 1

Figure 1: Three cases for the homogeneous equilibrium points with b = −5, b = −3.5 and b = −2.

To assess the stability of an equilibrium point u∗ we study the Taylor series around this

equilibrium point u∗,

f(u) = f(u∗) + df(u∗)(u− u∗) + h.o.t. = u∗ + df(u∗)(u− u∗) + h.o.t.

where we used that u∗ = f(u∗) by definition. By relocating u∗ to the left side, taking

absolute values, and disregarding the terms of higher order, we are led to the inequality

|f(u) − u∗| ≤ |df(u∗)||u − u∗|. In terms of the previously established iterated map, we

observe that

|uk+1 − u∗| ≤ |df(u∗)||uk − u∗|.

This means that if |df(u∗)| is less than 1, we have a contraction mapping, which indicates

that the equilibrium point u∗ is stable, and vice versa for |df(u∗)| bigger than 1. Therefore,

we just have to take the derivative of f with respect to u to study stability.

For this purpose, we can easily look at the slope of the sigmoid function at the intersection

points (fixed points) with the diagonal in Figure 1. The diagonal line serves as a reference

with a slope of 1. If the sigmoid function exhibits a shallower gradient at that intersection

point, the fixed point is considered stable. Conversely, if the gradient is steeper, the fixed

point is deemed unstable. We conclude that homogeneous equilibrium points with voltages
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close to either 0 or 1 tend to be stable points, while homogeneous equilibrium points with

medium voltage values are unstable.

The primary takeaway from this subsection is the understanding that the homogeneous

equilibrium points of the Amari model, under our stated assumptions, are dependent on

the parameters of the sigmoid function. In other words, the firing rate will determine the

homogeneous equilibrium points and the degree of network activity.

2.2 Non-Homogeneous Stationary Solutions.

Following our initial analytical investigation and the preliminary conclusions drawn, we now

progress to the next logical stage: identifying non-homogeneous equilibria. For mathematical

convenience, in this subsection, we will change one of the previously taken assumptions. We

will assume the firing rate is of Heaviside type, f(u) = H(u), since it resembles some of

the desirable properties we mentioned on the sigmoid, but will behave more conveniently for

deriving analytical results.

We wonder about the existence of stationary localised steady states of the neural field

model which we will denote by U(x). In this hypothetical solution, the system reaches an

equilibrium with respect to time t, and therefore U(x) satisfies

0 = −U(x) +
∫
R

ω(x− y) H(U(y)− h) dy

→ U(x) =

∫
R

ω(x− y) H(U(y)− h) dy.

(2)

Since we aim to find U(x) with a nontrivial spatial profile, we assume that U(x) ≥ h for

all x ∈ [x1, x2] for some x1, x2, and where h = U(x1) = U(x2).

Note that if this does not hold, the integral of the Equation 2 equates to 0, and U(x) = 0

is the trivial solution. Using this conceptual observation, and following the nature of the

Heaviside function we see that

U(x) =

∫ x2

x1

ω(x− y) dy. (3)

Using this result, we aim to find an explicit solution for the stationary localised steady

states. First, we prove a general statement which holds for our chosen synaptic kernel, and

which will be utilized in the derivation of an explicit formula for the bump solution.
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Lemma 1. Consider the cortical tissue as a subspace of R, and assume the synaptic kernel

to be w(z) = (1− |z|) e−|z|. Then,∫ x

a

ω(x− y) dy = (x− a)e−|x−a|.

Proof. Without loss of generality, let a < x for some generic a, x ∈ R. We see that∫ x

a

ω(x− y) dy =

∫ x

a

w(y − x) dy =

∫ 0

a−x

w(y) dy

=

∫ 0

a−x

(1− |y|) e−|y| dy =

∫ 0

a−x

(1 + y) ey dy

=

∫ 0

a−x

ey +

∫ 0

a−x

y ey =

∫ 0

a−x

ey + y ey|0a−x −
∫ 0

a−x

ey

= −(a− x)ea−x = (x− a)e−|x−a|.

Along this proof, we use the fact that the synaptic kernel is a symmetric function in

the first equality, and the fourth equality comes from the fact that we are integrating over

negative values of y, since a < x. We can now use this result to obtain a bump solution for

the neural field model. Substituting our kernel function into Equation 3 and splitting it for

an arbitrary x ∈ [x1, x2] yields

U(x) =

∫ x2

x1

ω(x− y) dy =

∫ x

x1

ω(x− y) dy +

∫ x2

x

ω(x− y) dy

= (x− x1)e
−|x−x1| + (x2 − x)e−|x2−x|

= sgn(x− x1) · |x− x1| · e−|x−x1| + sgn(x2 − x) · |x2 − x| · e−|x2−x|.

We conclude with an explicit bump solution to the neural field model, namely

U(x) = sgn(x− x1)ψ(|x− x1|) + sgn(x2 − x)ψ(|x2 − x|), (4)

where ψ(x) = xe−x. Once obtained the explicit expression for the bump solution U(x), we

want to get some information on what this function looks like and reach some conclusions

about how nicely does it behave. First, we wonder about the long-term behaviour of this

function. By taking the limit, we easily see that

lim
x→±∞

U(x) = lim
x→±∞

(x− x1)e
−|x−x1| + (x2 − x)e−|x2−x| = 0.

This is because the exponential term approaches 0 for both ±∞ at a faster rate than the

linear factor tends towards ±∞. We also want to check whether this function satisfies some

smoothness. In particular, we make the following claim.
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Lemma 2. The function U(x) = sgn(x − x1)ψ(|x − x1|) + sgn(x2 − x)ψ(|x2 − x|) satisfies

U(x) ∈ C1(R).

Proof. First, we note that

U(x) = sgn(x− x1)ψ(|x− x1|) + sgn(x2 − x)ψ(|x2 − x|)

= (x− x1)e
−|x−x1| + (x2 − x)e−|x2−x|.

It is trivial to see that the function f(x) ≡ (x− x1)e
−|x−x1| is continuously differentiable for

all x different from x1, and the function g(x) ≡ (x2−x)e−|x2−x| is continuously differentiable

for all x different from x2. We check differentiability of the first function f(x) at x1 by

looking at the limit definition of the derivative at x1. In particular, we see that

d

dx
f(x1) = lim

h→0

f(x1 + h)− f(x1)

h
= lim

h→0

he|h|

h
= lim

h→0
e|h| = 1 <∞.

Analogously for g(x) at x2,

d

dx
g(x2) = lim

h→0

g(x2 + h)− g(x2)

h
= lim

h→0

−he|h|

h
= lim

h→0
−e|h| = −1 <∞.

We see that both f and g are continuously differentiable for all x, and therefore U(x) is

continuously differentiable for all x.

As a final verification, we opt to plot this function for x1 = 0 and x2 = 1, to gain a clearer

understanding on the appearance of the solution U(x) = x e−|x| + (1− x) e−|1−x|.

Figure 2: Plot of U(x) for the initial conditions x1 = 0 and x2 = 1.

Notice how the spike is succeeded by the recovery phase, and how the signal vanishes in

the long-term. This conclusion makes us think of the non-homogeneous solution profile as
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somewhat of a bump, as the solution rises above the baseline level of neural activity, forms

a ”bump” or peak, and then returns to the baseline. Furthermore, we now know that this

solution is smooth, bell-shaped vanishing at infinity, and represents a concentrated region of

high neural activity in a background of lower activity.

2.3 Bifurcation Analysis

We finish the section with some bifurcation theory, where we study how the choice of h will

affect the bump solution. Following our previous results, we observed that the theoretical

bump solution depends on the values x1 and x2, as in Equation 4. Let x2 − x1 = ∆ as a

measure of the bump width. Recall that, by construction, h = U(x1). Thus, we see that

h = U(x1) =

∫ x2

x1

ω(x1 − y) dy = −
∫ x1

x2

ω(x1 − y) dy = −(x1 − x2)e
−|x1−x2|

= (x2 − x1)e
−(x2−x1) = ∆e−∆ = ψ(∆),

where h is the threshold parameter. Now, we use h = ψ(∆) to plot in Figure 3 a

bifurcation diagram for bump solutions, in the parameter h with solution measure ∆.

Figure 3: Bifurcation Diagram for parameter h, and red vertical line h = 1/e.

The bifurcation diagram shows the dependence of bump solutions, as defined in Equation

4, on the parameter h. Specifically, for h < 1/e, two distinct types of width ∆ are found to

be compatible with the existence of a theoretical bump solution. When h equals 1/e, there

is precisely one unique bump solution, and, the scenario for h > 1/e yields no such solutions.
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We recognise here a saddle-node bifurcation type, where varying the parameter h makes

the disappearance of two equilibria in the system. In particular, this happens for the value

h = 1/e, which is plotted as a vertical line in Figure 3.

3 Numerical Simulation

3.1 Finite-Elements Collocation Method

After doing the analytical exploration, we have come to the point where continuing without

the numerical methods becomes unfeasible. The latter will enable us to perform experiments

and, ideally, provide meaningful insights into the Amari model. As shown in the recent work

of Avitabile [2], projection methods can be effectively used for solving neural field equations.

Due to time constraints, we rely on the authenticity of Avitabile’s work and our consistent

implementation of the Finite-Elements Collocation Method, employing it without providing

comments on numerical convergence.

Consider a neural field model of the Amari type, as in Equation 1, under the assump-

tions stated at the beginning of Section 2. As we said, we aim to solve it by numerically

approximating Equation 1. For that purpose, we decide to implement the Finite-Elements

Collocation Method. We start by dividing the domain Ω = [−L,L] of the problem into a

finite number of n evenly-spaced elements for some n ∈ N. This division yields a set of

collocation points {xi s.t. xi = −L+ 2
n
i;∀i ∈ {1, 2, ..., n}}, which are evenly separated by a

∆x = 2L
n−1

distance. Since these collocation points are part of the domain, Equation 1 still

holds on them, so that

∂tu(xi, t) = −u(xi, t) +
∫ π

−π

ω(xi, y)f(u(y, t))dy + I(xi, t)

for i ∈ {1, 2, ..., n}. Note that the main difficulty in this differential equation is dealing with

the integral. Thus, the next step is using the collocation points to approximate the integral

by a sum, and with this we obtain a completely discretized system. In particular, we use the

composite trapezoidal rule to make this approximation 1. As shown in [12], this trapezoidal

formula is second-order accurate with respect to ∆x, which means that the error in the

approximation decreases quadratically as the step size decreases.

This approximation enables us then to choose a set of basis functions to approximate the

1The composite trapezoidal rule uses piecewise-linear interpolations of the function we want to integrate at the
aforementioned collocation points.
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solution within each element, so that Equation 1 becomes

u̇i(t) ≈ −ui(t) +
n∑

j=0

ω(xi, xj)f(uj(t))ρj + Ii(t), with t ∈ R>0

u(xi, 0) = v(xi)

where ρj = ∆x/2 for j ∈ {0, n}, and ρj = ∆x otherwise. Note we used the notation

ui(t) = u(xi, t), Ii(t) = I(xi, t), and the dot notation for the derivative with respect to time,

that is, the only independent variable in the discretized system. This discretized system can

be expressed in a vectorial notation so that

d

dt
U(t) ≈ −U(t) +M · F (U(t)) + I(t), with t ∈ R>0

U(0) = V

(5)

where M is a matrix whose entry M [i, j] = ω(xi, xj)ρj. Note that Equation 5 is nothing by

a large system of linear differential equations, which can be solved using various numerical

techniques. In practice, we will use ode45() in MATLAB to solve this system of equations.

We provide the code implementation function of this algorithm in Listing 1.

3.2 Theoretical Validation using Numerics

Now that we have a mechanism for simulating the Amari equation, our goal is to generate

numerical evidence that corroborates the theory we previously formulated in the analytical

section. First, we briefly check that the Amari model supports two types of stationary

solutions, namely a homogeneous equilibrium solution, and a stationary bump solution (non-

homogeneous).

For simplicity, we simulate a straightforward stationary solution, U(x) ≡ 0, in the case

of homogeneity. This was achieved by setting the initial profile function to a constant value

of 0. However, in our attempt to simulate this homogeneous, trivial solution of U(x) ≡ 0,

instead of a consistent flat state throughout the entire time period, we observed an extremely

small fluctuation in behaviour. To solve this problem, we opted to use the Heaviside firing

rate function instead of the sigmoid function. Our choice is justified by the fact that the

Heaviside function essentially becomes the sigmoid function as µ approaches infinity.
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Figure 4: Trivial stationary solution U(x) ≡ 0 with code in Listings 2.

In our study of the non-homogeneous steady state, we not only confirmed its existence,

but we also verified that one of the observable non-homogeneous bump solutions aligns with

the one we derived in the analytical section, namely

U(x) = sgn(x− x1)ψ(|x− x1|) + sgn(x2 − x)ψ(|x2 − x|),

where ψ(x) = xe−x. To get this, we simply set the initial profile to the theoretically predicted

stable bump solution and affirmed that it indeed produced a bump solution.

Figure 5: Theoretical Stationary Bump Solution U(x) with code in Listings 3.

One observation we made is that this secondary approach yields results only when the

Heaviside type is utilized as the firing rate function. Conversely, when the sigmoid function

is used, we generally obtain a vanishing solution or a bump solution that differs from the

one predicted theoretically. This corresponds to the assumption we introduced to achieve

this bump solution in the analytical section.
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Finally, we also confirmed the theoretical outcomes derived from our bifurcation analysis.

The primary theoretical understanding is that for a choice of h < 1/e, two distinct bump

solutions exist; for h = 1/e, there is a single bump solution, and for h > 1/e, there are no

bump solutions. For a more visual understanding, we’ve included some of these scenarios in

Figure 9 in the Appendix.

Specifically, we exemplify the existence of two unique bump solutions in cases where

h = 0.25, which is representative of conditions where h < 1/e. Additionally, we showcase

the plot corresponding to the scenario where h = 1/e, leading to ∆ = 1. Lastly, we encourage

the reader to explore what happens when h > 1/e using the provided code in the Appendix.

Based on our findings, we predict that the result will be a vanishing system.

To validate the results of our bifurcation analysis, we carried out simulations for various

values of h and assessed the resultant width ∆ of the formed bump. The observed results,

illustrated in Figure 6, demonstrate a correlation between the experimentally obtained widths

and those predicted theoretically, thereby reinforcing our prior theoretical assertions.

Figure 6: Bifurcation Diagram Validation with code in Listings 4.

Note, for h > 1/e, the psi function in the code does not yield any roots and returns

NaN. This provides an explanation for the positioning of those points located on the x-axis

to the right of 1/e.
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3.3 Heading Representation of the flies

Finally, we turn on the stimulus function and try to replicate some of the experimental results

obtained in the Kim et al paper [9]. This study reported that a population of neurons, called

E-PG neurons, in the Drosophila melanogaster ellipsoid body (EB) appears to use bump-like

neural activity dynamics to represent the animal’s heading in visual environments and in

darkness.

The researchers first determined whether the E-PG population activity bump tracks the

fly’s heading direction relative to its visual surroundings during tethered flight. As with

walking flies, neural population activity during flight was organized into a single bump,

where they observed that the visual scene contained a complex pattern (Fig.1G in [9]).

However, unlike in walking, the activity bump seldom tracked the fly’s motor actions in

darkness (Fig.1H in [9]).

Figure 7: Left replicates Fig.1G. Right replicates Fig.1H. with code in Listings 5

We have reproduced these two empirical observations in Figure 7. To recreate the complex

pattern, as shown in Figure 1G in the original paper, we employed a sinusoidal function (refer

to the code in the appendix). Conversely, for the bump observed during the animal’s flight

in darkness, as depicted in Figure 1H in the original paper, we utilized a constant external

input function with a value of 0, which naturally corresponds to the no-visual input function

in reality. Note that our selection of the domain [−π, π] is justified analogously to the

discretization in the Regions of Interest (ROIs) as per the original paper. This justification

is grounded in the parametrization ϕ that we introduced at the beginning of the Analytical

section.

Secondly, the researchers probed the network’s response to more artificial conditions, such
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as abrupt visual stimulus shifts. Depending on the distance of the shift, they observed the

E-PG bump either “flowed” continuously (Fig.4A in [9]) or “jumped” to the new location

(Fig.4B in [9]).

We have successfully replicated the first case scenario. In order to achieve this, we utilized

an artificially constructed bump function as the external input (refer to the appendix for

the code), enabling us to reorient the naturally occurring bump to a location of our choos-

ing. Despite our efforts, we encountered difficulties implementing the ”jump” discontinuity,

pointing to this scenario as a potential constraint of the Amari model. Nevertheless, we re-

frain from drawing definitive conclusions on this matter, since it remains uncertain whether

this is an inherent limitation of the model, or merely a reflection of our limited creativity to

come up with external input functions.

Figure 8: Continuous Flow Change replication with code in Listings 6.

We conclude this report with our brief reproductions of the experiments. Our work

affirms that the Amari model proves to be a potent tool in understanding and simulating

certain observed experimental results related to the brain function. More specifically, this

model provides pivotal insights into bump solutions. For example, in the course of replicating

brain dynamics induced by heading representation, it was observed that this Amari model

maintained the uniqueness of the bump solution, which is fundamental given that an animal

can face only one direction at a given time, and demonstrated persistence, a key attribute

enabling an animal to maintain its bearings even in darkness.
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4 Appendix

Listing 1: Finite-Elements Collocation Method function:

function [x, t , uHist] = finiteElementsCollocationMethod(h, external input, initial profile )

%% Create the spatial grid
nx = 2000;
L = pi;
x = linspace(−L,L,nx)';
delta x = (2.0∗L)/(nx−1);

%% Synaptic kernel matrix
omega = @(x,y) (1.0 − abs(x−y)).∗exp(−abs(x−y));
rho = delta x∗[0.5; ones(nx−2,1); 0.5];

W = zeros(nx,nx);
for i = 1:nx

for j = 1:nx
W(i,j) = omega(x(i),x(j))∗rho(j );

end
end

%% Firing Rate Function
mu = 50; % condition: mu >> 1, sigmoid to Heaviside as mu −−> inf;
sigmoid = @(u) 1.0./(1.0+exp(−mu∗(u−h)));
Heaviside = @(u) (u−h >= 0);

%% RHS Function
N = @(t,u) −u + W∗sigmoid(u) + external input(x,t);

%% Run Dynamics
tspan = [0, 200];
[ t ,uHist] = ode45(N,tspan,initial profile (x));

end
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Listing 2: Homogeneous Trivial Solution code (use Heaviside type in the FECM function):

h = 0.25;
constant = @(x, t) 0.0;
initial profile = @(x) 0.0∗x;

[x, t , uHist] = finiteElementsCollocationMethod(h, constant, initial profile );

figure;
mesh(t,x,uHist')
title ( 'Approximation to the Amari neural field model')
xlabel('time coordinates')
ylabel('x coordinates')
zlabel('Neuron Voltage')

figure;
imagesc(t,x,uHist');
colorbar;
title ( 'Temperature plot');
xlabel('time coordinates');
ylabel('x coordinates' );
axis xy;

Listing 3: Non-Homogeneous Bump Solution code (use Heaviside type in the FECM function):

h = 0.25;
constant = @(x,t) 0.0;

psi = @(x) x.∗exp(−x);
x1 = 0.0;
x2 = x1 + fzero(@(x) x.∗exp(−x) − h, 1);
initial profile = @(x) sign(x−x1).∗psi(abs(x−x1)) + sign(x2−x).∗psi(abs(x2−x));

[x, t , uHist] = finiteElementsCollocationMethod(h, constant, initial profile );

figure;
mesh(t,x,uHist')
title ( 'Approximation to the Amari neural field model')
xlabel('time coordinates')
ylabel('x coordinates')
zlabel('Neuron Voltage')

figure;
imagesc(t,x,uHist');
colorbar;
title ( 'Temperature plot');
xlabel('time coordinates');
ylabel('x coordinates' );
axis xy;
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Listing 4: Bifurcation Analysis Validation code:

%% Cleaning
clear, clc ;

%% External Input Function
external input = @(x, t) 0.0;

%% Bifurcation Analysis Validation
h min = 0.01;
h max = 0.4;
nh = 30;

h values = linspace(h min, h max, nh);
delta values = zeros(size(h values));

for i = 1:length(h values)

h = h values(i );

% initial Profile Function for this h
psi = @(x) x.∗exp(−x);
x1 = 0.0;
x2 = x1 + fzero(@(x) x.∗exp(−x) − h, 2.5);

initial profile = @(x) sign(x−x1).∗psi(abs(x−x1)) + sign(x2−x).∗psi(abs(x2−x));

[x, t , uHist] = finiteElementsCollocationMethod(h, external input, initial profile );

uFinal = uHist(end,:);

% measure delta
[˜, idx] = mink(abs(uFinal − h), 2);
delta values ( i ) = x(max(idx)) − x(min(idx));

end

%% Theoretical Bifurcation Diagram
delta min = 0;
delta max = 8;
ndelta = 200;

psi = @(x) x.∗exp(−x);
delta = linspace(delta min, delta max, ndelta);

figure;
plot(psi(delta ), delta );
hold on;
plot(h values, delta values , 'o')
hold off;
title ( 'Bifurcation Diagram Validation');
xlabel('h');
ylabel('\Delta');
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(a) First Bump solution for h = 0.25. (b) Temp. for the first profile.

(c) Second Bump solution for h = 0.25. (d) Temp. for the second profile.

(e) Unique Bump solution for h = 1/e. (f) Temperature for h = 1/e.

Figure 9: Visualization of the Bifurcation Analysis.
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Listing 5: Flying Observation Replication Code (use Heaviside type in the FECM function):

h = 0.25;

gAm = 0.2;
mu = −2; % position
sigma = 0.9; % width
external input = @(x, t) gAm ∗ exp(−(x − mu).ˆ2 / (2 ∗ sigmaˆ2));

psi = @(x) x.∗exp(−x);
x1 = 0.0;
x2 = x1 + fzero(@(x) x.∗exp(−x) − h, 2.5);

initial profile = @(x) sign(x−x1).∗psi(abs(x−x1)) + sign(x2−x).∗psi(abs(x2−x));

%% Run Dynamics
[x, t , uHist] = finiteElementsCollocationMethod(h, external input, initial profile );

figure;
imagesc(t,x,uHist');
colorbar;
title ( 'Temperature plot');
xlabel('time coordinates');
ylabel('x coordinates' );
axis xy;

Listing 6: Continuous Flow Change replication Code:

h = 0.25;

gAm = 0.2;
mu = −2; % position
sigma = 0.9; % width
external input = @(x, t) gAm ∗ exp(−(x − mu).ˆ2 / (2 ∗ sigmaˆ2));

psi = @(x) x.∗exp(−x);
x1 = 0.0;
x2 = x1 + fzero(@(x) x.∗exp(−x) − h, 2.5);

initial profile = @(x) sign(x−x1).∗psi(abs(x−x1)) + sign(x2−x).∗psi(abs(x2−x));

%% Run Dynamics
[x, t , uHist] = finiteElementsCollocationMethod(h, external input, initial profile );

figure;
imagesc(t,x,uHist');
colorbar;
title ( 'Temperature plot');
xlabel('time coordinates');
ylabel('x coordinates' );
axis xy;
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[9] Sung Soo Kim, Hervé Rouault, Shaul Druckmann, and Vivek Jayaraman. Ring attractor

dynamics in the drosophila central brain. Science, 356(6340):849–853, 2017.

[10] Ayelet N Landau and Pascal Fries. A neural mechanism for gamma/beta oscillation

generation and its role in temporal attention. Proceedings of the National Academy of

Sciences, 109(32):13490–13495, 2012.

[11] Paul L Nunez and Ramesh Srinivasan. Electric Fields of the Brain: The Neurophysics

of EEG. Oxford University Press, 2006.

[12] Alfio Quarteroni and Fausto Saleri. Scientific Computing with MATLAB and Octave.

Springer, 2 edition, 2006.

20



[13] Grace M Richard and Thomas J O’Donnell. Bursting as a source of non-linear deter-

minism in the firing patterns of nigral dopamine neurons. Brain research, 855(1):27–40,

2000.

[14] Terrence J Sejnowski and Ole Paulsen. Traveling waves in visual perception. Nature,

439:85–92, 2006.

[15] Haim Sompolinsky, Andrea Crisanti, and Hans-Jürgen Sommers. Chaotic behavior in

neural networks. Physical Review Letters, 61(3):259, 1988.

[16] Hugh R Wilson and Jack D Cowan. Excitatory and inhibitory interactions in localized

populations of model neurons. Biophysical journal, 12(1):1, 1972.

21


	Introduction
	Analytical Exploration
	Homogeneous Equilibrium Solutions
	Non-Homogeneous Stationary Solutions.
	Bifurcation Analysis

	Numerical Simulation
	Finite-Elements Collocation Method
	Theoretical Validation using Numerics
	Heading Representation of the flies

	Appendix

