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Abstract
Inverse RNA folding—the challenge of designing RNA sequences that reliably
adopt a prescribed secondary or tertiary structure—is pivotal for applications rang-
ing from mRNA vaccines and riboswitches to RNA-based nanostructures. Despite
recent advances, existing methods such as gRNAde encounter limitations in ex-
pressivity, representation, decoding robustness, and the incorporation of biological
constraints. In this work, we introduce gRNAdeX, an enhanced RNA design frame-
work that addresses these challenges through four key innovations. Experimental
evaluations on a reduced dataset demonstrate that gRNAdeX outperforms the base-
line in both sequence recovery and structural alignment, marking a significant step
toward more robust and biologically plausible RNA design.
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1 Introduction
Designing RNA sequences that fold into desired secondary or tertiary structures—known as the
inverse RNA folding problem—is a fundamental challenge at the intersection of computational
biology and generative modeling. This problem underlies a growing number of applications, from
programmable therapeutics (e.g., mRNA vaccines) and gene regulation (e.g., riboswitches, CRISPR
guide RNAs) to RNA-based nanostructures in synthetic biology. Yet, inverse folding remains
computationally formidable due to the vast combinatorial search space of nucleotide sequences and
the complex, many-to-many relationship between sequences and their folded structures.

Recent advances in machine learning have enabled the development of generative models that
map structured inputs (e.g., RNA backbones) to nucleotide sequences. Among these, gRNAde [1]
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introduced a promising geometric graph-based approach, modeling RNA conformations as 3D graphs
with rich vector-valued features, and using GVP-based neural networks to generate sequences that
respect both local geometry and global structure. However, several important challenges remain
unresolved.

First, while GVP layers enforce local equivariance to geometric transformations, their fixed inductive
biases may limit expressivity, especially in capturing long-range dependencies or subtle structural
variations. Second, standard pooling methods—such as averaging across conformations—can be
non-injective, thereby collapsing distinct inputs into the same representation and breaking universality.
Third, decoding strategies often rely on greedy autoregressive sampling, which can propagate early
errors and lead to suboptimal outputs. Finally, most models are agnostic to biological priors,
generating sequences that are statistically plausible but biologically implausible, violating known
constraints such as forbidden motifs (e.g., nullomers) or type-specific biases.

In this work, we present gRNAdeX, an enhanced RNA design model that builds on the geometric
backbone of gRNAde while addressing its key limitations through a principled and biologically
informed lens. Our proposed contributions fall under four complementary pillars:

• Geometric Expressivity: We analyze the Lipschitz properties of the GVP encoder to assess
sensitivity and contractiveness, and introduce a parallel attention mechanism to capture global
dependencies without sacrificing equivariance.

• Universal Representation: We replace simple averaging with a multi-moment tensor pooling
scheme, enabling injective set encoding and ensuring theoretical universality under group
symmetries relevant to RNA structure.

• Robust Sampling: We redesign the decoding process with beam search and adaptive sampling
strategies (top-k, nucleus, min-p), reducing exposure bias and improving sequence quality across
diverse structures.

• Biological Constraints: We incorporate a pipeline that identifies RNA-specific Minimally
Absent Words (MAWs) to block biologically implausible motifs during sequence generation,
giving researchers greater precision and control over the output. By offering explicit, user-
defined control over forbidden motifs, our tunable system bridges the gap between structural
intent and sequence design—empowering researchers to generate RNA sequences that are not
just plausible, but purpose-built.

Together, these modifications yield a modular and biologically grounded framework for RNA se-
quence generation that is expressive, theoretically principled, and practically robust. Despite limited
compute resources, our enhanced model demonstrates improved sequence recovery and structural
alignment compared to the original gRNAde baseline. The contributions introduced here not only
improve performance, but also broaden the adaptability and biological plausibility of structure-
conditioned RNA generation.

2 Background
The RNA molecule is constituted by a set of ribose sugars attached to nitrogenous bases and phosphate
groups [2]. Amongst other factors, the chemical composition of RNA differs from that of DNA
in its nitrogenous bases (which contain the pyrimidine molecule of Uracile, also denoted as U,
instead of DNA’s Thymine, also denoted as T) and its ribose sugar (thereby the names, Rybonucleic
Acid, or RNA, and Deoxyribonucleic Acid, or DNA). This ribose compound in fact contains an
additional hydroxyl (-OH) group in carbon 2 (C2) [2, 3] which provides the RNA molecule with
distinct properties – most importantly, RNA’s distinct flexibility or lability [3].

In the context of the inverse folding problem [4], this added "flexibility" in the RNA molecule
increases the search space for primary sequences (or nucleotide-based sequences) [5, 6] that are
compatible with a given structure. Although this "search" problem has been extensively studied
in the case of secondary sequences [7–9], these methods lack notions of the molecule’s specific
conformational structure and are in fact deeemed impractical for larger RNA sequences (li.e., some
large ribosomal RNAs can be of lengths of 3,500 nucleotides [10]).

Similar to proteins [11], RNA function is highly dictated by its 3D conformation. By leveraging
only on secondary structure inputs, existing methods [12, 13] cannot benefit from the enriched 3D
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(a) PDB ID: 5E54. (b) PDB ID: 5SWD. (c) PDB ID: 5SWE.

Figure 1: Adedine riboswitches with equivalent secondary structure information and slightly distinct
3D conformations obtained from the Protein Database Bank [15] (in apo, intermediate conformations
and holo conformations).

atom-positional information of distinct RNA conformations [14]. Some examples of molecules with
different 3D conformations (or states) are the apo structures of the adenine riboswitch aptamer domain
(see Figure 1a), the adenine riboswitch aptamer in an intermediate-bound state (see Figure 1b) and
the ligand-bound structure of adenine riboswitch aptamer domain (see Figure 1c).

gRNAde [1] constitutes a state-of-the-art solution to the RNA inverse-folding problem. Through the
use of SE(3)-Equivariant Graph Neural Network Layers [16] and autoregressive decoding, gRNAde
maintains the physical properties of RNA molecules, achieving top performance in both, single-state
and multi-state RNA design, which was previously not possible with methods such as Rosetta [17] or
ViennaRNA [12] (the predecessor of Rosetta). Other generative modeling methods conditioned on
RNA backbone structures are RiboDiffusion [5], or RNAFlow [18].

Despite their advancements, these generative models still face a significant search-space challenge,
necessitating the generation of multiple candidate sequences (typically 16). In contrast, approaches
like RNA-DCGen [19] leverage on pretrained RNA language models (e.g., BiRNA-BERT [20] or
RiNALMo [21]) that have been fine-tuned on structural or functional data. These models capture
extensive “learned biological priors” from large RNA corpora, enabling RNA-DCGen to more
efficiently generate sequences consistent with the target constraints [19]. However, relying on these
pretrained distributions can lead to incomplete coverage of the design space sequence, since any
biases in the training set—such as over-representing certain RNA families and under-representing
unusual motifs—may lead the model to overlook viable designs outside its learned distribution.
In this landscape, gRNAdeX introduces biologically informed priors or constraints. By focusing
on a narrower, biologically relevant search space, incorporating 3D-enriched information, and
ensuring a robust exploration of the possible sequence space, it more effectively guides the final RNA
3D-to-sequence mapping.

3 Methods

In this work, we propose a series of methodological advancements that enhance the original gRNAde
architecture. Our contributions are motivated by these central aims: (i) to increase the model’s
expressivity; (ii) to guarantee universality; (iii) to integrate robust sampling strategies that mitigate
error propagation; and (iv) to embed biologically informed constraints (e.g., minimal absent words,
typed conditioning) for more realistic RNA designs. For a detailed overview of the blocks/mappings
used in gRNAde, see Table 5. Figure 2 depicts the new gRNAdeX architecture, with the highlighted
blocks indicating the novel contributions introduced in this work. The following sections provide a
more detailed overview of the motivation and implementation of these contributions.

3.1 Encoder Expressivity

To improve the representational capacity of the model, we performed a detailed analysis of the
Lipschitz continuity of the encoder component. This allowed us to assess the potential contractiveness
of the overall model mapping, aiming to mitigate underperformance in edge-case scenarios. Note

3



gRNAdeX: eXpressive, Biologically-eXtensible gRNAde

Figure 2: Overview of the gRNAdeX architecture.

that, although we focus on studying the encoder, the results from this section extend naturally to the
decoder layers, which can be viewed as encoder layers with C = 1.

Denote the overall encoder mapping by f = fL ◦ · · · ◦ f1 ◦ femb, where the embedding mapping is
given by

femb = GVPemb ◦ LN : {G1, . . . ,GC} 7→ {H1, . . . ,HC},

with each Gi ∈ (R64 × R4×3)N corresponding to a conformation, and Hi ∈ (R128 × R16×3)N its
high-dimensional representation. Assuming the layer normalization (LN) is 1–Lipschitz, we can
upper-bound the Lipschitz constant of the embedding as L(femb) ≤ LGVPemb .

Each encoder layer fl (l = 1, . . . , L) is composed of two submodules: a GVP-based message-passing
component (with Lipschitz constant LGVPmsg ) and a feedforward update (with Lipschitz constant
LGVPff ), integrated via a residual connection and agreggated by a linear operator A with spectral
norm ∥A∥. Thus, the Lipschitz constant for the lth layer is bounded by

L(fl) ≤ 1 +
(
∥A∥L(l)

GVPmsg
· L(l)

GVPff

)
.

By applying the composition rule for Lipschitz functions, the overall encoder satisfies

L(f) ≤ LGVPemb ·
L∏

l=1

(
1 +

(
∥A∥L(l)

GVPmsg
· L(l)

GVPff

))
.

In this context, we recall that a large Lipschitz constant can make the model overly sensitive to
small input perturbations, leading to instability, while a small constant may result in excessive
contractiveness, limiting the model’s ability to distinguish between different inputs. Our goal is to
enhance the model’s expressivity while carefully navigating this trade-off. We observe that each
additional layer increases the overall Lipschitz constant monotonically, highlighting the growing
risk of instability with network depth. Conversely, the only component that could potentially induce
contractiveness is the embedding map. For simplicity, we assume this is not the case in our model.
This assumption is intuitively reasonable, as the embedding maps inputs to a higher-dimensional
space through a learnable matrix, and we rely on the effectiveness of gradient descent to prevent the
learned transformation from being excessively contractive.

Motivated by these considerations, this Lipschitz analysis informed us to consider introducing
an attention-based layer in parallel with the original GVP-based message passing. Rather than
multiplying the existing Lipschitz factors, which could potentially cause a notorious blow-up in
sensitivity, a parallel aggregator is simply added by fusing the GVP and attention outputs via
α×GVP+(1−α)×Attention. For simplicity, we set α = 0.5, leaving the learning of an optimal α
to future work. Because the Lipschitz constant of a sum f1+ f2 is bounded by L(f1)+L(f2) (scaled
by the mixing coefficients), this design boosts expressivity—through attention’s adaptive neighbor
weighting—without recklessly inflating the overall Lipschitz bound. Note the new Lipschitz constant
encoder becomes

L(f) ≤ LGVPemb ·
L∏

l=1

(
1 +

(
α∥A∥L(l)

GVPmsg
· L(l)

GVPff
+ (1− α)L

(l)
attn

))
.
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Unlike a fixed linear operator A, attention learns a data-dependent weighting matrix (constrained
to be row-stochastic via a softmax). While the GVP branch enforces strong geometric equivariance
and local feature aggregation, the attention branch captures long-range dependencies and global
interactions. Our proposed hybrid mechanism can “down-weight” uninformative neighbors and
“up-weight” salient ones, capturing more nuanced node relationships and thus increasing the model’s
capacity to discriminate among different inputs. Their combined output is more expressive and
capable of representing a broader class of functions. We achieve this while maintaining a theoretical
guarantee that the encoder’s Lipschitz constant does not increase significantly.

3.2 Universality via Multi-Tensor Pooling

One anomaly we presumed to be working suboptimally was the way the pooling was working in
the original architecture. We note that in this architecture, after the embedding layers, each RNA
structure graph is represented as an element of

H = (R128 × R16×3)N ,

and the input to the encoding layer is a set

X = {H1, . . . ,HC} ⊂ HC .

The encoder layers enriched these represantions and their output is then passed to the pooling layer.
The function computed by the pooling must respect the symmetry inherent to this input: it must be
invariant under any permutation of the C graphs (i.e., invariant with respect to SC) and equivariant
with respect to the symmetry group H (e.g. rigid-motion group) that governs the internal geometric
structure of each graph.

A critical component in achieving universality for set functions (in our case is set of geometric
graphs) is the design of the pooling operator. Standard pooling strategies (such as simple averaging)
are invariant under SC but are not injective; that is, they can collapse different sets into the same
representation. To overcome this limitation, we propose a pooling operator based on higher–order
statistics.

Let ψ : H → F be the per–graph feature extractor implemented by our AttentiveGVP–GNN layers,
where F ⊂

(
R128 × R16×3

)N×C
. We define the pooling operator ϕ as

ϕ(X) =

K⊕
k=1

1

C

C∑
i=1

ψ(Hi)
⊙k,

where
⊕

denotes concatenation along the feature dimension.

Here, ψ(Hi)
⊙k represents the element-wise kth power of the feature vector, and K is chosen

sufficiently large so that the mapping

ϕ : HC → (RK·128 × RK·16×3)N

is injective over the compact domain of interest. This formulation retains richer structural information
across different moment orders while still enforcing permutation invariance over conformations.

It is worth noting that ϕ remains invariant with respect to SC because averaging preserves permutation
invariance, while the concatenation operation allows for a more expressive feature representation.
Additionally, ϕ is equivariant with respect to H, as ψ is built from H–equivariant GVP layers. This
pooling strategy strengthens the representational capacity of our model by capturing higher-order
geometric interactions among conformations.

We now state the following theorem, which is inspired by and extends results such as those in [22].

Theorem 1 (Universality of the Model). Let K ⊂ HC be a compact domain that is invariant under
the action of G = SC ×H, where SC permutes the C graphs and H acts on the geometric features.
Suppose that the per–graph mapping ψ : H → F is implemented by universal H–equivariant layers
and that for a sufficiently large integer K, the pooling operator ϕ(X) is injective on K. Then, for any
continuous G–invariant function

f : K → (R128 × R16×3)N ,
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and for every ϵ > 0, there exists a multilayer perceptron M such that

sup
X∈K

∥M(ϕ(X))− f(X)∥ < ϵ.

The proof of this theorem is presented in Appendix B. This theoretical result motivates our archi-
tectural modification: by replacing simple averaging with higher–order tensor moment pooling, we
ensure that the aggregated representation retains all necessary information to uniquely characterize
the input set. Consequently, this guarantees the universality of the encoder component of our model,
and consequently for our whole model .

3.3 State-of-the-Art Sampling Strategies

RNA design consists of the search of given nucleotide sequences that are compatible with certain
predefined structures [1, 19]. The inverse RNA folding problem is therefore a mapping from structures
to nucleotide-based sequences.

To enhance the quality of the generated sequences, we modified the greedy autoregressive decoding
strategy used in gRNAde [1]. Our approach incorporates beam search with adjustable branching
and width parameters, and supports multiple sampling techniques—including top-k and priority
sampling [23], top-p (nucleus) sampling [24], and min-p sampling [25]. By enabling these diverse
sampling strategies, our method addresses the limitations of early commitment in standard single-path
decoding, promoting a more effective exploration of the RNA sequence space.

Let x = (x1, x2, . . . , xT ) denote a candidate RNA sequence of length T . In the previous strategy,
the log-probability of a complete sequence is given by the autoregressive decomposition

logP (x) =

T∑
t=1

log p(xt | x1, . . . , xt−1).

In that framework, at each decoding step a single token is sampled, which is equivalent to a greedy
[26] or stochastic selection from the categorical distribution p(xt | x1, . . . , xt−1). Although compu-
tationally efficient, this approach is prone to error propagation: an erroneous token sampled early in
the sequence may irreversibly bias subsequent predictions.

To address this limitation, our new strategy introduces a beam search mechanism parameterized by a
beam width B and a branching factor b. At each token position t, we maintain a beam Bt consisting
of the B most promising partial sequences x1:t based on their cumulative log-probabilities. For each
sequence in Bt, the model proposes b candidate continuations using a chosen sampling strategy σ
(e.g., top-k, top-p, or min-p sampling), yielding an expanded set of B × b candidates.

Formally, if Bt = x
(1)
1:t , . . . , x

(B)
1:t with corresponding log-probabilities ℓ(x(i)1:t), then for each i

we obtain candidate tokens c(i)1 , . . . , c
(i)
b along with their log-probabilities δ(i)1 , . . . , δ

(i)
b . The log-

probability of each extended sequence is updated as

ℓ(x
(i)
1:t ◦ c

(i)
j ) = ℓ(x

(i)
1:t) + δ

(i)
j ,

where ◦ denotes sequence concatenation. The B candidates with the highest updated scores are then
selected to form the new beam Bt+1.

This branching and pruning mechanism can be seen as an approximate maximization of the sequence
likelihood:

x∗ = argmax
x

logP (x).

By tracking multiple candidates, our strategy reduces the risk of local optima that may occur in
greedy, single-path sampling, and thus more effectively approximates the true maximum a posteriori
(MAP) sequence. Nonetheless, the runtime complexity of the decoding process is O(T · B · C),
where T is the sequence length, B is the beam width, and C is the cost of generating and sampling b
candidates per beam element. Thus, improvements in diversity and sequence quality via higher B or
k come at a cost of greater computational overhead.

Another well-known limitation of beam search—often referred to as the beam search curse
[27]—arises when increasing the beam width, which leads to a degradation in output quality. This
counterintuitive effect is closely related to the curse of dimensionality: as the search space expands
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combinatorially with larger beams and deeper token horizons, the model becomes more likely to
overcommit to sequences with superficially high likelihood but poor semantic or structural integrity.

To mitigate these effects, we incorporate a flexible temperature parameter τt that increases as a
function of sequence length t. This dynamic temperature flattens the probability distribution at each
decoding step, thereby counteracting the model’s tendency to over-concentrate on top-ranked tokens
as the sequence length is increased. By scaling the logits before sampling, τt ensures that as beam
sequences grow longer, the effective entropy of the distribution remains sufficiently high to encourage
diversity in candidate generation, similar to [28].

The enhanced decoding strategy of gRNAdeX combines the strengths of deterministic algorithms
such as beam search — which seek to maximize the cumulative logarithmic probability of generated
sequences — with adaptive stochastic sampling (e.g., top-p, min-p), further refined by a calibrated
stochasticity parameter that dynamically regulates diversity during generation.

3.4 RNA-Informed Sequence Generation

In the context of proteins and DNA, we often come across the term nullomers. These represent
short DNA or amino acid sequences that are absent from the genome or proteome, respectively [29].
A broader term, Minimally Absent Words (MAWs), describes both nullomers and longer absent
sequences that become present in a sequence after the removal of either their leftmost or rightmost
letter [30]. MAWs have been computed in the context of bioinformatics for sequence comparison in
organisms of all domains of life [31]. However, while methods for identifying absent sequences are
well-established for DNA and proteins [30], they have been largely overlooked in RNA sequence gen-
eration—despite the abundance of RNA sequence data, especially when compared to the availability
of 3D backbone structures [5].
Definition 1. Let Σ be a finite alphabet and S ∈ Σ∗ be a finite string. A string w ∈ Σ+ is said to be
absent [32] from S if w does not appear as a contiguous substring of S. We call w a minimal absent
word of S if:

1. w is absent from S, and

2. every proper substring of w is present as a substring in S.

In this work, we introduce gRNAdeX, a modular and transparent pipeline for identifying RNA-
specific MAWs which researchers can easily adapt to different datasets and biological contexts.
Unlike approaches that rely on pretrained language models—often trained on general-purpose
datasets with unknown biases—our method leverages the rich availability of RNA sequence data [19]
directly, without introducing opaque, internally learned constraints during its training process, such
as in [19].

The core of the gRNAdeX pipeline combines a linear-time algorithm for MAWs extraction [33]
with Markov modeling and multiple-testing correction techniques [30], enabling the identification of
substrings that are truly absent from RNA types in a user-defined design task. This pipeline empowers
users to tailor absence constraints to their specific biological questions, a crucial feature in RNA
design research.

By assigning near-zero probability (or a logit of −∞) to tokens that would complete a MAW, we
prevent the generation of biologically implausible subsequences—while only restricting the final
token. This is key, as the rest of the substring does appear in the reference dataset, highlighting the
precision and benefit of using MAWs to guide sampling in autoregressive decoding.

This targeted filtering narrows the sampling space to empirically valid sequences, enhancing biological
relevance in RNA design. As a result, gRNAdeX provides a transparent, modular, and trustworthy
framework for researchers. By focusing on biologically plausible sequences, it reduces the complexity
of the inverse folding search space and improves both the quality and interpretability of the generated
RNA.

4 Results
Due to constraints in GPU resources, we did not pursue deeper or hierarchical architectures or
substantially increase latent dimensions. Instead, our focus was on implementing the targeted
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modifications proposed in Section 3: multi-head attention in the encoder/decoder, higher-order tensor
moment pooling, and a robust sampling mechanism. All experiments reported here were conducted
on a reduced dataset restricted to RNA backbones with fewer than 500 nucleotides, allowing us to
obtain preliminary yet indicative results without prohibitive computational overhead.

4.1 Architecture

Table 2 summarize our ablation study, comparing the baseline model with various architectural
modifications. The specific configurations are detailed in Table 1. In our designs, the baseline uses
a standard GVP encoder with mean pooling and categorical sampling, while the modified variants
incorporate attention mechanisms and Multi-Tensor pooling; here, Attention* denotes attention on
both scalar and vector features, whereas Attention is applied only to scalars.

Table 1: Architectural components used in each model variant

Model Variant Encoder Pooling Decoder Sampling

Baseline GVP Mean GVP Categorical
Decoder-Light Attention GVP + Attention* Mean GVP Categorical
Hybrid Light GVP + Attention* Mean GVP + Attention* Categorical
Hybrid + Attention Pooling GVP + Attention* Attention GVP + Attention* Categorical
Hybrid + Multi-Tensor GVP + Attention* Multi-Tensor GVP + Attention* Categorical
Edge Ablation GVP Multi-Tensor GVP Categorical
Decoder Ablation GVP + Attention Multi-Tensor GVP Categorical
Full Hybrid GVP + Attention Multi-Tensor GVP + Attention Categorical
Full Hybrid + Beam GVP + Attention Multi-Tensor GVP + Attention Beam

Our results seem to indicate that employing Multi-Tensor pooling on node features generally improves
performance, as demonstrated by the Hybrid + Multi-Tensor variant, which achieved the highest
scScore. In contrast, excessive attention—especially when applied to node vectors (Hybrid + Attention
Pooling)—degrades performance. One plausible explanation for this is that node vectors inherently
capture critical geometric and spatial information in a structured manner. Applying an attention
mechanism directly to these vectors may disrupt their intrinsic spatial relationships, leading to a loss
of essential structural cues. Furthermore, the Full Hybrid + Beam variant—integrating comprehensive
attention with beam sampling—attains the best recovery performance, offering a well-balanced
trade-off between recovery and structural accuracy. Based on these findings, we select the Full Hybrid
+ Beam model for future experiments, as it leverages the strengths of our architectural modifications
while mitigating the negative effects associated with excessive attention.

Table 2: Performance metrics including perplexity and scScore (RMSD)

Model Variant BEST test recovery Perplexity scScore scScore (RMSD)

Baseline 0.4301 1.7471 0.5144 14.4954

Decoder-Light Attention 0.4255 1.6879 0.5661 14.1097

Hybrid Light 0.4292 1.7393 0.6786 13.8746

Hybrid + Attention Pooling 0.4079 2.6126 0.0305 22.7999

Hybrid + Multi-Tensor 0.4288 1.7656 0.6889 13.0251

Edge Ablation 0.4460 1.6988 0.6775 12.2989

Decoder Ablation 0.4518 1.6551 0.5568 11.7571

Full Hybrid 0.4575 1.7223 0.5245 13.6263

Full Hybrid + Beam 0.4609 1.6837 0.5254 13.0505
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It is noteworthy that the original gRNAde model achieves a sequence recovery rate of approximately
56%. In contrast, our best model currently attains around 46% on a reduced dataset—limited to
backbones with no more than 500 nodes due to restricted GPU resources. Consequently, the observed
improvement of roughly 3% over the baseline might underestimate the potential gains on the full
dataset.

4.2 Sampling Strategies

Due to a cluster access failure prior to submission, complete analytics were unavailable. The results
and figures presented herein are based on the most recent data downloads and offer only a preliminary
view of performance trends. Hyperparameters (see Table 3) were tuned to balance computational
efficiency and sequence recovery accuracy, selecting the configuration that minimizes runtime while
maximizing RNA sequence reconstruction from 3D backbone inputs.

Based on empirical evaluations summarized in Figures 3 to 5, and although non-clearly distinguish-
able from the lack of availability of latest hyperparameter runs, we hypothesize, using literature and
incomplete data downloads, that min-p sampling is the method deemed most effective for our use
case scenario, tuned with a threshold of 0.05. This low threshold ensures that the sampling process
prioritizes high-probability continuations by pruning unlikely paths while still maintaining diversity
among plausible candidates. Beam parameters were selected to optimize computational efficiency
and model recovery, as evidenced by Figure 7. The chosen configuration reflects the best trade-off
between computational cost and accurate sequence recovery.

Figure 14 further illustrates the limitations associated with increasing beam branching—a phe-
nomenon known as the beam search curse [27]. While a higher beam branching factor improves
self-consistency and lowers perplexity by exploring a larger set of candidate sequences and refining
outputs to adhere to learned patterns, excessive branching can detrimentally impact native sequence
recovery. Overextensive exploration tends to favor fluency and internal consistency over strict ad-
herence to native RNA structures, leading to outputs that deviate from actual biological sequences.
This trade-off underscores the necessity of aligning the sampling strategy with the specific recovery
objective rather than relying solely on general-purpose language modeling metrics.

Finally, as shown in Figure 18, the results obtained after hyperparameter tuning—despite being based
on limited hyperparameter-tuning runs—demonstrate that our proposed gRNAdeX model outper-
forms the original gRNAde across all evaluated metrics. These findings validate our architectural
modifications and sampling strategies, providing a solid foundation for future experiments.

Table 3: Hyperparameter search space for generation experiments.

Temperature Max Temp Temp Factor Beam Width Beam Branch greedy top-p top-k min-p

0.0,0.1,0.5 0.5 1e-6,1e-5 1,2,4,6,8 1,2,4,6,8 - 0.8,0.9 2,3 0.05,0.1

4.3 RNA-Guided Generation

Using the open-source repository MAWs with a few data pre-processing and post-processing stages
to ensure compatibility with RNA formatting (original code implementation is designed for DNA),
we created a dataset of RNA-specific MAWs in FASTA file formats from the RNAsolo database
[35] of sequence lengths between 11 and 16 nucleotides [29, 36, 37]. The dataset is made available
for use at unique_rfam_maw. For reference, this dataset can be either directly used or replaced by
compatible file formatting to guide the specific design task in hand.

4.3.1 Use Case

To showcase the modular RNA-typed gRNA generation capabilities of gRNAdeX, we conducted
a targeted experiment using the organism Streptobacillus moniliformis DSM 12112. A detailed
description of the dataset associated with this organism can be found in Appendix D.

We utilized the custom-built dataset, unique_rfam_maw, and performed statistical analyses using
an RNA-specific Markovian testing pipeline akin to the Nullomers Assessor. Through this pipeline,
we identified statistically significant minimally absent words (MAWs) tailored to a specific 5s rRNA
design scenario for S. moniliformis.
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Figure 6: Evaluating sampling strategies for different model metrics across [34] benchmark.
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Recovery.
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Figure 10: Effect of beam branch and beam width on different model metrics for min_p 0.05 on [34]
benchmark.

The resulting MAW enrichment analysis for this use case is presented in Table 4, with each MAW
serving as a prior or forbidden motif during the 5s rRNA generation task. Provided these restrictions,
we can feed the 3D backbone coordinates of a single .pdb file (for single-state) or folder (for multi-
state design) into our gRNAdeX pipeline. Due to the aforementioned data access issue on the cluster,
we are currently unable to provide a comprehensive qualitative analysis of these results.

5 Conclusion & Future Work
By leveraging a robust mathematical architectural framework that enhances expressivity and integrat-
ing a novel pipeline for incorporating biologically motivated constraints, gRNAdeX has surpassed
all performance metrics of the original gRNAde model. Our experiments demonstrate that the
combination of advanced sampling strategies, improved pooling mechanisms, and targeted attention
modules yields significant gains in sequence recovery and structural alignment.

For future work, it will be valuable to incorporate additional RNA backbone information alongside
protein spatial context. In particular, exploring a one-hot encoding scheme to represent adjacent
or interacting amino acid sequences could capture critical structural and functional cues currently
overlooked by models trained solely on the RNAsolo dataset. Moreover, integrating physical
constraints into the loss function and refining fusion weights within the hybrid encoder may further
enhance model performance, ultimately advancing the state-of-the-art in RNA design and expanding
its applicability to RNA–protein interaction studies.
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Figure 14: Marginal effect of beam branch and beam width on different model metrics for min_p
0.05 on [34] benchmark.
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Figure 18: Comparison of best gRNAdeX architecture versus gRNAde for different model metrics
on [34] benchmark.

Table 4: Significantly absent MAWs in Streptobacillus moniliformis DSM 12112 during 5S rRNA
design task using Bonferroni correction.

MAW Organism Category Design Task Correction Method Adjusted p-value

UUUUUUUUUUU Streptobacillus moniliformis DSM 12112 Bacteria 5S rRNA Bonferroni 4.09× 10−7

UUAAUAUAUUU Streptobacillus moniliformis DSM 12112 Bacteria 5S rRNA Bonferroni 6.10× 10−5

UUAAUAUAUAU Streptobacillus moniliformis DSM 12112 Bacteria 5S rRNA Bonferroni 4.43× 10−3

UUAAUAAUAUA Streptobacillus moniliformis DSM 12112 Bacteria 5S rRNA Bonferroni 3.19× 10−2

UUAAAAUAAUA Streptobacillus moniliformis DSM 12112 Bacteria 5S rRNA Bonferroni 6.26× 10−4

UAUUAUAAUAU Streptobacillus moniliformis DSM 12112 Bacteria 5S rRNA Bonferroni 9.07× 10−3

UAUAUAAAUAU Streptobacillus moniliformis DSM 12112 Bacteria 5S rRNA Bonferroni 5.63× 10−3

UAAUAUAUUUU Streptobacillus moniliformis DSM 12112 Bacteria 5S rRNA Bonferroni 2.82× 10−5

UAAAAUAAUUA Streptobacillus moniliformis DSM 12112 Bacteria 5S rRNA Bonferroni 1.18× 10−2

UAAAAAAAAAU Streptobacillus moniliformis DSM 12112 Bacteria 5S rRNA Bonferroni 3.94× 10−6

AUUAAUAUAUU Streptobacillus moniliformis DSM 12112 Bacteria 5S rRNA Bonferroni 1.15× 10−2

AUAUAUAUAUU Streptobacillus moniliformis DSM 12112 Bacteria 5S rRNA Bonferroni 2.29× 10−2

AUAAUAUAUUA Streptobacillus moniliformis DSM 12112 Bacteria 5S rRNA Bonferroni 1.02× 10−2

AUAAUAAUAUU Streptobacillus moniliformis DSM 12112 Bacteria 5S rRNA Bonferroni 1.05× 10−2

AUAAAAUAAUU Streptobacillus moniliformis DSM 12112 Bacteria 5S rRNA Bonferroni 1.03× 10−3

AUAAAAAAAAA Streptobacillus moniliformis DSM 12112 Bacteria 5S rRNA Bonferroni 5.02× 10−6

AAUUUAAUUUA Streptobacillus moniliformis DSM 12112 Bacteria 5S rRNA Bonferroni 9.35× 10−3
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A Tables

Table 5: Summary of GNN transformations across the architecture pipeline.

Stage/Layer Mapping

Embedding LayerNorm + GVP:(
R64 × R4×3

)N×C 7→
(
R128 × R16×3

)N×C(
R32 × R1×3

)E×C 7→
(
R32 × R1×3

)E×C

Encoder MultiGVPConvLayer × 3 (edges remain fixed):(
R128 × R16×3

)N×C 7→
(
R128 × R16×3

)N×C

Pooling Averaging (across conformational representations):(
R128 × R16×3

)N×C 7→
(
R128 × R16×3

)N(
R32 × R1×3

)E×C 7→
(
R32 × R1×3

)E
Decoder GVPConvLayer × 3 (autoregressive):(

R128 × R16×3
)N 7→

(
R128 × R16×3

)N
From pooled edge + sequence embeddings 7→ (sdec

e ,vdec
e )

Output Layer GVP:(
R128 × R16×3

)N 7→ (R4)N

Sampling Categorical Sampling:

(R4)N 7→ {A,C,G,U}N

B Proofs
Proof 1. Consider an arbitrary function

f : K → (R128 × R16×3)N ,

with K ⊂ HC =
(
(R128 × R16×3)N

)C
and the group actionG = SC×H defined as in the Theorem

1 statement.

Note in the encoding of our model, each graph Hi is mapped to a feature representation ψ(Hi) ∈ F
by a stack of H–equivariant GVP–GNN layers. We assume ψ can approximate any continu-
ous H–equivariant function on H. The mapping ϕ aggregates higher–order moments of the set
{ψ(H1), . . . , ψ(HC)}. Classical results in symmetric polynomial theory (e.g., Newton’s identities)
imply that, if K is chosen sufficiently large relative to the dimension of ψ(Hi), then the collection{

C∑
i=1

ψ(Hi)
⊙k : k = 1, . . . ,K

}
uniquely determines the multiset {ψ(Hi)}. Thus, ϕ is injective. Since f is G–invariant and ϕ is both
invariant and injective, there exists a continuous function ρ defined on ϕ(K) such that

f(X) = ρ(ϕ(X)).
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By the classical universal approximation theorem (e.g., [38, 39]), there exists an MLP M that can
approximate ρ uniformly over the compact set ϕ(K) to within any desired error ϵ. Thus, the composite
mapping

F (X) =M(ϕ(X))

approximates f uniformly on K. This proves that the encoder part of our architecture is a universal
approximator of continuous G–invariant functions, provided that the pooling operator uses higher–
order statistics.

C Minimally Absent Words and Nullomers Assessor
The database created with minimally absent words is found in unique_rfam_maw, where we provide
the user with a list of forbidden motifs per RNA type from the RNASolo dataset. This database
should be used with care, taking into account that these sequences should be tested against desired
tasks using the modified pipeline of Nullomers Assessor.

D Use-Case Organism Details

Table 6: Metadata summary for Streptobacillus moniliformis DSM 12112 genome assemblies.

Field Value

Organism Scientific Name Streptobacillus moniliformis DSM 12112

Organism Common Name —

Organism Qualifier strain: DSM 12112

Taxonomy ID 519441

Assembly Name ASM2456v1

Assembly Accession (GenBank) GCA_000024565.1

Source (GenBank) GenBank

Annotation (GenBank) Annotation submitted by US DOE Joint Genome Institute (JGI-PGF)

Assembly Accession (RefSeq) GCF_000024565.1

Source (RefSeq) RefSeq

Annotation (RefSeq) GCF_000024565.1-RS_2024_12_09

Level Complete Genome

Contig N50 1,662,578

Size (bp) 1,673,280

Submission Date 2009-11-16

Gene Count (GenBank) 1,568

Gene Count (RefSeq) 1,570

BioProject PRJNA29309

BioSample SAMN00002603
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