
Transferable Neural Transports for
Parallel Tempering

Antonio Franca

Department of Engineering
University of Cambridge

This dissertation is submitted for the degree of
Master of Philosophy in Machine Learning and Machine Intelligence

Queens’ College August 2025

To love, curiosity, and the simple miracle of being alive.

Declaration

I, Antonio Franca of the Queens College, candidate for the MPhil in Machine Learning and
Machine Intelligence, hereby declare that this dissertation is my own work, unaided except
where acknowledged, and contains no material previously submitted for any comparable
purpose. This work utilises the Microsoft Timewarp dataset (https://huggingface.co/datasets/
microsoft/timewarp) and adapts components from the MIT–licensed repositories microsoft/-
timewarp, VincentStimper/boltzmann-generators, and the open-source implementation PTSD.
The code accompanying this thesis is available at this link.

Antonio Franca
August 2025

https://huggingface.co/datasets/microsoft/timewarp
https://huggingface.co/datasets/microsoft/timewarp
https://github.com/microsoft/timewarp
https://github.com/microsoft/timewarp
https://github.com/VincentStimper/boltzmann-generators
https://github.com/cambridge-mlg/Progressive-Tempering-Sampler-with-Diffusion
https://github.com/antoniofrancaib/accelerate-md

Acknowledgements

First and foremost, I would like to thank my supervisors, José Miguel Hernández-Lobato,
Tony RuiKang OuYang, and Jiajun He, for introducing me to the fascinating world of
molecules and their intricacies, and for their guidance and support. I am also deeply grateful
to everyone I met in Cambridge, especially my fellow master’s classmates, for the engaging
conversations we shared; I will always cherish having crossed paths with you. Finally, I
would like to thank my parents, my girlfriend Victoria, and all my friends for their love and
support. Wishing you all the very best.

Abstract

Parallel tempering (PT) accelerates sampling by swapping configurations between tem-
peratures, yet swap acceptance collapses as molecular dimension grows because adjacent
tempered targets have vanishing overlap. We address this by learning bijective transports
that construct overlap between adjacent temperatures while preserving exactness. Concretely,
we use an involutive deterministic swap with a Jacobian-corrected Metropolis rule that
maintains detailed balance, and we show that a bidirectional likelihood objective aligns
with the swap-acceptance exponent, directly training transports to increase acceptance. We
propose three model families along the bias–capacity spectrum: a coordinate-only RealNVP
(PTSwapFlow), a symmetry-aware graph flow (PTSwapGraphFlow), and a global self-
attention model with auxiliary variables (PTSwapTransformerFlow). On a nine-dipeptide
dataset spanning 300–1000 K, vanilla PT exhibits uniformly low, size-dependent swap accep-
tance, whereas our learned transports consistently boost acceptance across systems, including
held-out (unseen) peptides, providing initial evidence of transferability.

Table of contents

List of figures xiii

List of tables xiv

1 Introduction 1
1.1 Contributions . 3
1.2 Outline . 3

2 Background 4
2.1 Why sampling molecular conformations? 4
2.2 Classical MCMC Methods . 6

2.2.1 Markov-Chain Formalism . 7
2.2.2 Local Kernels: MH, MALA, HMC 8
2.2.3 Parallel Tempering . 10

2.3 Neural Transports . 12
2.3.1 Transport Paradigm . 12
2.3.2 Normalizing Flows . 13
2.3.3 Diffusion Models . 15
2.3.4 Flow Matching . 16

2.4 Graph Neural Networks . 17
2.4.1 Molecular Representation . 17
2.4.2 Neural Architectures . 18

2.5 Related Work . 20
2.6 Summary . 21

3 Methodology 22
3.1 Problem Formulation . 22
3.2 Architectures . 25

3.2.1 PTSwapFlow . 25

xii Table of contents

3.2.2 PTSwapGraphFlow . 26
3.2.3 PTSwapTransformerFlow . 28

3.3 Molecular Symmetries . 30
3.4 Learning Objective . 31
3.5 Training . 33

3.5.1 Optimization . 33
3.5.2 Data Pipeline . 34

3.6 Summary . 35

4 Experiments and Results 36
4.1 Preliminaries . 36
4.2 Dataset Generation . 38
4.3 Swap Acceptance Rate (SAR) . 39
4.4 Symmetry . 41
4.5 Attention and Adjacency . 43
4.6 Energy Validation . 44
4.7 Ramachandran Coverage . 45
4.8 Summary . 46

5 Conclusion 47
5.1 Limitations . 47
5.2 Future Work . 48

Appendix A Proofs & Supplementary Mathematics 53
A.1 MH kernel satisfies detailed balance . 53
A.2 2D Affine Coupling Layer Example . 54
A.3 MH acceptance rate with deterministic proposal 56
A.4 Flow-Enhanced Acceptance Criterion . 57
A.5 Proof of Lemma 3.1.1 . 58
A.6 KL ↔ NLL (positions only). 59

Appendix B Dataset Quality 60

List of figures

2.1 Temperature-ladder ensemble sampler. Each replica (colored curves) ex-
plores a tempered density via local moves (small wiggles) and occasionally
proposes swaps between adjacent temperatures (arrows). 11

4.1 Sampling on an 18-mode GMM. (a) Langevin remains confined to one mode.
(b) PT with coordinate swaps explores multiple modes in 2D. 37

4.2 SAR of vanilla PT versus GMM dimension for three temperature gaps. . . . 37
4.3 Distribution of εE(3) (Å) over random rigid motions. 42
4.4 Distribution of εperm (Å) over random within-type permutations. 42
4.5 AA bonds (left) vs. normalized transformer attention (right). 44
4.6 3D bonds (left) vs. “attention skeleton” from top-1 neighbors (right). 44
4.7 Energy distributions for AA under the simple-flow model across the three

adjacent temperature pairs (300→450 K, 450→670 K, and 670→1000 K).
Densities are estimated via Gaussian KDE. The x-axis denotes energy (kJmol−1)
and the y-axis denotes density. 45

4.8 Ramachandran plots for AA at the 300 K replica after running PT in a
four–temperature (geom schedule) ladder (300–1000 K). 46

B.1 Energy distribution histograms across temperature replicas. 61
B.2 Ramachandran plots for AA at low and high temperature replicas. 61

List of tables

4.1 Baseline Swap Acceptance Rates (%). 40
4.2 SAR (%) by architecture for pair (300–450 K). Estimation follows (4.1)–(4.3). 40

A.1 Forward coupling layer transformations for 2D example. 54
A.2 Inverse coupling layer transformations for 2D example. 55

B.1 Dataset Statistics Summary . 60

Chapter 1

Introduction

The first principle is that you must not fool yourself—
and you are the easiest person to fool.

— Richard P. Feynman (1918–1988)

This thesis addresses a fundamental problem in computational statistics and molecular
simulation: how to draw representative samples from a high–dimensional target distribution
known only up to a normalizing constant. Concretely, for a configuration space Ω ⊂ R3N

and an energy function U : Ω → R, the Boltzmann law

µβ (dx) = Z−1
β

exp
(
−β U(x)

)
dx, Zβ =

∫
Ω

exp
(
−β U(x)

)
dx,

governs the equilibrium statistics of molecular conformations at inverse temperature β =

(kBT)−1 (Boltzmann, 1868; Risken, 1996). Direct evaluation of Zβ is intractable in all but
toy systems, so sampling becomes the principal computational task. This “unnormalized
density” setting pervades Bayesian inference, statistical mechanics, and modern generative
modeling.

Two complementary paradigms dominate this landscape. The first designs Markov kernels
whose invariant measure is the target and that mix rapidly enough to explore it well. Metropo-
lis–Hastings (MH), Metropolis-Adjusted Langevin Algorithm (MALA), and Hamiltonian
Monte Carlo (HMC) exemplify this approach: they propose local or gradient–informed
moves and correct with an acceptance test that cancels the unknown partition function (Douc
and Cor, 2015; Hamilton, 1834). While powerful, local dynamics face an exponential bar-
rier problem (detailed in Chapter 2): expected barrier–crossing times scale like exp(β ∆U),
rendering rare events prohibitively expensive in high dimensions (Kramers, 1940). Paral-
lel tempering (PT) mitigates this by coupling multiple replicas at different temperatures;

2 Introduction

high–temperature chains explore broadly and share information with low–temperature chains
via replica–exchange moves (Predescu et al., 2004). However, PT itself suffers from the
temperature–overlap problem (detailed in Chapter 3): adjacent tempered distributions overlap
weakly as system size grows, driving swap acceptance down and the required number of
replicas up (Predescu et al., 2004).

The second paradigm builds transport maps that push a simple source distribution toward the
target. Normalizing flows parameterize invertible maps with tractable Jacobians; likelihoods
are exact and sampling is direct (Dinh et al., 2017; Kingma and Dhariwal, 2018; Papamakar-
ios et al., 2018; Behrmann et al., 2019). Diffusion models and flow matching relax strict
invertibility to gain expressivity, learning vector fields or score functions that connect noise
to data (Ho et al., 2020; Chen et al., 2019; Grathwohl et al., 2018; Lipman et al., 2023). In
molecular contexts, flows have been shown to accelerate sampling and to transfer across
related systems when architectures and training pipelines are chosen carefully (Klein, Foong,
et al., 2023; Tan, Bose, et al., 2025; Klein and Noé, 2024).

These paradigms need not compete. Recent work has highlighted a constructive synergy:
learned transports can be embedded into PT to manufacture overlap between neighboring
tempered targets, replacing naive coordinate swaps with flow–aligned swaps that enjoy
much higher acceptance while preserving exactness via Metropolis corrections (Zhang et
al., 2025a). At a high level, PT supplies global connectivity across temperatures, and the
transport supplies local efficiency by aligning the pairwise marginals.

Our focus is equilibrium sampling of small peptides in Cartesian coordinates. Probabilistic
modeling of conformational ensembles enables binding and solvation free–energy estimation,
uncertainty–aware structure prediction, and comparison to ensemble–averaged experimental
observables, all tasks that depend on integrals under µβ rather than on following real–time
dynamics (Risken, 1996). While Langevin or Moleculat Dynamics (MD) integrators target
the correct invariant law (Langevin, 1908; Risken, 1996), they waste effort on femtosecond
vibrations; equilibrium samplers that jump directly between conformations can be far more
compute–efficient in this regime. The central technical challenge, then, is to design neural
transports that (i) are expressive enough to align adjacent tempered Boltzmann measures, (ii)
respect molecular symmetries where possible, and (iii) transferable across peptides.

1.1 Contributions 3

1.1 Contributions

This thesis is contributed as follows:

• We reproduce accelerated parallel tempering (PT) via learned transports work (Zhang
et al., 2025b) implementing an involutive deterministic swap with exact Metropolis
correction.

• We propose two transferable model families that work at cross–peptide generalization:
a graph–aware flow, and a transformer-based flow.

• We analyze permutation and E(3) properties in the proposed models, both theoretically
and empirically.

• We derive the proper augmented negative log-likelihood loss (NLL) and acceptance
exponent in the augmented normalizing flow borrowed from (Klein, Foong, et al.,
2023).

1.2 Outline

The thesis is organized as follows:

• Chapter 2 introduces equilibrium sampling for molecular systems and reviews Markov-
chain Monte-Carlo (MCMC) kernels, parallel tempering (PT), and neural transports
(flows, diffusion, flow matching) alongside graph neural networks (GNNs).

• Chapter 3 formalizes flow–aligned replica swaps, presents our three architectures
(coordinate, graph, transformer), learning objectives, and symmetry analysis.

• Chapter 4 details datasets, evaluates swap acceptance, transfer to unseen peptides; and
reports results on symmetry remedies, and other physical validation metrics.

• Chapter 5 summarizes findings and limitations and outlines future work.

Chapter 2

Background

The computer is incredibly fast, accurate, and stupid.
Man is unbelievably slow, inaccurate, and brilliant.

Together they are powerful beyond imagination.
— Leo Cherne (1912–1999)

In this chapter we outline the necessary background, which spans multiple topics. Our aim is
to tie them together in a cohesive narrative. To begin, we introduce statistical-mechanical
motivation for equilibrium sampling of molecular conformations. We then survey classical
Markov-chain Monte Carlo (MCMC) kernels. To overcome the barrier-crossing limits of
these local kernels, we turn to parallel tempering (PT), and the use of neural transports to
speed up replica exchanges and mixing. Finally, we introduce graph neural networks (GNNs)
to integrate molecular information into neural models.

2.1 Why sampling molecular conformations?

The conformation of an N-atom molecule can be fully specified by its Cartesian coordinates
in three-dimensional space

x = (r1, . . . ,rN) ∈ Ω ⊂ R3N ,

where ri = (xi,yi,zi)
⊤ is the three–dimensional position of atom i, and Ω denotes the region

of configuration space allowed by hard-sphere repulsion, bond-length constraints, and any
other natural laws our reality imposes. On this 3N-dimensional manifold we define a
potential-energy surface U : Ω → R whose gradients generate the familiar Newtonian flow

mi r̈i(t) =−∇riU(r1(t), . . . ,rN(t)), i = 1, . . . ,N. (2.1)

2.1 Why sampling molecular conformations? 5

This second-order ordinary differential equation (ODE) underlies molecular dynamics (MD)
simulations. Intuitively, one passes from this deterministic MD trajectory in Equation (2.1)
to a probability law by randomising the starting point. Imagine launching many replicas of
the molecule, each initialised with tiny, independent perturbations that reflect the ambient
temperature. If the system is ergodic, meaning every region of configuration space is
eventually visited, then the long-time histogram of atomic positions built from this swarm
will stabilise. Classical results in statistical mechanics (Boltzmann, 1868) show that the
limiting frequency of any conformation x is proportional to the Boltzmann weight

µβ (dx) =
1

Zβ

e−β U(x)
λ (dx), Zβ =

∫
Ω

e−β U(x) dλ (x), (2.2)

where β = (kBT)−1, with kB denoting the Boltzmann constant, T the absolute temperature of
the heat bath, and λ is the Lebesgue measure on R3N . Another, more systematic way to view
MD as probabilistic sampling is to embed the randomness directly into Equation (2.1) via
Langevin dynamics. Physically, this mimics a molecule diffusing in a solvent at temperature
T , i.e. molecular collisions impart random kicks, while viscous drag removes momentum
(Langevin, 1908). Mathematically, one augments Newton’s Equation (2.1) with a linear
damping term and Gaussian noise, yielding the underdamped stochastic differential equation
(SDE)

dri =
pi

mi
dt,

dpi =−∇riU(x)dt − γ pi dt +
√

2γmi/β dWi(t), (2.3)

where γ > 0 is a friction (collision) coefficient and dWi(t) is a standard Wiener process
(Gaussian noise) term. The first term in dpi is the deterministic force as in Newton’s law;
the second and third terms represent Stokes’ drag and random hits from the heat bath. By
taking the high-friction limit γ → ∞ (with Di = kBT/(γmi) fixed), momenta decorrelate and
one recovers the overdamped SDE,

dri =−Di β ∇riU(x)dt +
√

2Di dWi(t). (2.4)

Crucially, one shows via the Fokker–Planck argument (Risken, 1996) that both Equation (2.3)
and its overdamped limit in Equation (2.4) share the same unique invariant measure, namely
the Boltzmann density µβ from Equation (3.1). Yet, faithfully integrating either Equa-
tion (2.1) or its Langevin variants forces our timestep down to the fastest bond-stretch and
angle-bend vibrations, on the order of 1–2 femtoseconds (10−15 s). Thus, to reach biolog-

6 Background

ically relevant timescales, such as the millisecond (10−3 s) folding of a small protein, we
would need on the order of 1012 steps, making such simulations prohibitively expensive.
However, the femtosecond-scale is only relevant if we care about the detailed dynamical
trajectory, but this simulation barely captures the long-time occupancy of conformations,
exactly the information we need when computing binding free energies, solvation or partition
free energies, or ensemble-averaged NMR observables.

Since any ergodic thermostat (e.g. underdamped Langevin) converges to the same Boltzmann
law, we can avoid resolving every tiny oscillation when our aim is merely equilibrium aver-
ages. Instead, by leaping directly between conformations and sampling µβ , we concentrate
compute where the probability mass lies. This insight, known as equilibrium sampling, drives
the focus of this thesis: designing a transferable, ML-driven sampler that yields high-quality
Boltzmann samples even for unseen peptides. To conclude this motivational overview, we
recall then this Boltzmann Equation (3.1) assigns each molecular conformation its equilib-
rium probability, underpinning calculations of equilibrium observables. In particular, any
equilibrium property can be written as

⟨ f ⟩β =
∫

Ω

f (x)µβ (dx) (2.5)

where f : Ω → R is measurable. Unfortunately, direct integration of Equation (2.5) is
infeasible because Ω has very high dimension (typically 3N with N ∼ 102 or more), and
Zβ cannot be computed analytically. As a result, we must rely on sampling methods to
approximate ⟨ f ⟩β . Once high-quality samples x(i) ∼ µβ are available, any observable ⟨ f ⟩β

can be approximated using the usual Monte Carlo estimator. In the next section, we introduce
some classical sampling techniques that generate draws from unnormalized densities, such
as Equation (3.1).

2.2 Classical MCMC Methods

Having motivated why one wishes to draw equilibrium conformations, we now turn to how. In
the previous section we argued that MD, while physically faithful, wastes effort by resolving
femtosecond vibrations when our real interest is equilibrium statistics. Markov–chain Monte-
Carlo (MCMC) replaces the physical trajectory by a fictitious random walk in configuration
space that is designed to visit conformations with exactly the Boltzmann frequency, yet can
jump over unimportant regions far more quickly than MD.

2.2 Classical MCMC Methods 7

2.2.1 Markov-Chain Formalism

A Markov chain on the configuration space Ω is fully specified by its transition kernel.

Definition (Transition kernel). Let Ω be the configuration space equipped with its Borel
σ -algebra B(Ω). A sequence of random variables (Xt)t∈N taking values in Ω is called a
Markov chain with transition kernel K : Ω×B(Ω)→ [0,1] if, for every t ≥ 0 and every
measurable set A ⊆ Ω,

Pr
(
Xt+1 ∈ A

∣∣ Xt = x,Xt−1, . . . ,X0
)
= K(x,A).

Once K is specified, the sampling problem reduces to running the chain long enough so that
its distribution converges to the target µβ . To make this precise we need the notion of an
invariant measure.

Definition (Invariant measure). A probability measure π on (Ω,B(Ω)) is said to be
invariant under the kernel K if∫

Ω

π(dx)K(x,A) = π(A), ∀A ∈ B(Ω). (2.6)

Invariance implies then that, if Xt ∼ π , then also Xt+1 ∼ π: the chain leaves π unchanged. A
sufficient condition for invariance is detailed balance

µβ (dx)K(x,dy) = µβ (dy)K(y,dx). (2.7)

However, while detailed balance guarantees that π is a stationary measure for K, it by itself
does not ensure that the chain will actually reach that equilibrium from an arbitrary start. To
guarantee convergence to µβ from any initial X0, the chain must be irreducible and aperiodic.
Together these properties comprise ergodicity, which by standard theorems (Aldous and Fill,
2002) implies

L (Xt) −−−→
t→∞

µβ and
1
T

T

∑
t=1

f (Xt)
a.s.−−→

∫
f (x)µβ (dx),

meaning that (i) the distribution of Xt converges to the Boltzmann law, and (ii) time-averages
along the chain recover true ensemble averages of any observable f .

By formalizing it this way, we see that any MCMC sampling algorithm differs only in its
choice of the kernel K. The challenge becomes designing K to mix rapidly (i.e. minimise
autocorrelation times) while preserving invariance (2.6).

8 Background

2.2.2 Local Kernels: MH, MALA, HMC

Having introduced some necessary formalisms, we now describe how to build a kernel K that
satisfies detailed balance for the Boltzmann target π(x) ∝ e−βU(x). For this, we generally
make use of the Metropolis–Hastings (MH) procedure which corrects the kernel proposal so
that assymptotically our sampling mechanism converges to the target distribution.

Definition (MH kernel). MH proceeds in two stages. Given the current state x,

(i) propose y ∼ q(y | x) =⇒ (ii) accept with α(x,y) = min
{

1,r(x,y)
}

(2.8)

where q is any convenient transition density, π is an arbitrary target distribution from
which we want to obtain samples, and the acceptance ratio r(x,y) = π(y)q(x|y)

π(x)q(y|x)

In our Boltzmann sampling scenario, the acceptance ratio r(x,y) involves the difference of
potential energies U(y)−U(x), and does not require knowledge of the partition function Zβ .
For symmetric kernel proposals, moves that decrease energy (U(y)<U(x)) are always ac-
cepted, while moves that increase energy are accepted in proportion to Boltzmann probability
exp[−β ∆U], exactly compensating for their lower target density.

The trade-off presented is that a small proposal step δ yields high acceptance but slow,
diffusive exploration. A large δ explores aggressively but is often rejected. By choosing q to
propose larger or more informed steps (e.g. incorporating energy gradients), one influences
the mixing speed of the chain, and the invariance of target density πβ is guaranteed by the
accept/reject mechanism.

Remark. One verifies by simple algebra that the resulting transition kernel (see A.1)

K(x,dy) = q(y | x)α(x,y)dy +
[
1−A(x)

]
δx(dy), (2.9)

with A(x) =
∫

q(y | x)α(x,y)dy, satisfies detailed balance (2.7).

Thus, by embedding the target πβ into the design of the transition kernel K and enforcing
detailed balance, we obtain a Markov chain whose long-time behavior correctly samples an
arbitrary unnormalized target (such as the Boltzmann density) without ever computing the
intractable normalizing constant. The only remaining incognita at this point is what proposal
distribution q(y | x) should we use to explore the density πβ as efficiently as possible, i.e.
one that rapidly yields representative samples so accurate estimates can be obtained from
few draws (high effective sample size per unit compute).”

2.2 Classical MCMC Methods 9

A naive choice is to pick a simple, state-dependent Gaussian proposal q(y | x)=N
(
y; x, σ2Id

)
and apply the plain MH accept–reject criteria. While this random-walk MH can work in low
dimensions, it quickly succumbs to the curse of dimensionality (Bellman, 1957). However,
why move blindly when the energy gradient points where the probability mass lies. A natural
improvement is the Metropolis–adjusted Langevin algorithm (MALA), which seeds each
proposal with one Euler–Maruyama step of the overdamped Langevin SDE.

Definition (MALA proposal). The Metropolis-Adjusted Langevin Algorithm (MALA)
proposes moves via

y = x− δ 2

2 ∇U(x)︸ ︷︷ ︸
drift

+ δ ξ︸︷︷︸
noise

, ξ ∼ N (0, I),

where the drift term biases proposals toward lower energy regions, and the noise term
injects isotropic Gaussian randomness to ensure proper exploration of configuration space.

Naturally, a final MH correction restores exact sampling from the target distribution. The
choice of MALA proposal distribution is then q(y | x) = N

(
y; x− δ 2

2 ∇U(x), δ 2I
)

. Yet
MALA remains fundamentally local and can be blocked by high energy barriers. Hamiltonian
Monte Carlo (HMC) pretends to overcome this by introducing auxiliary momentum and
simulating Hamilton’s equations.

Definition (HMC proposal). Hamiltonian Monte Carlo (HMC) constructs a proposal by
first sampling an auxiliary momentum p ∼ N (0, M), and then evolving the pair (x,p)
under Hamilton’s equations (Hamilton, 1834)

ẋ = M−1p, ṗ =−∇U(x)

for L steps of size ε using a reversible, volume-preserving leapfrog integrator. The new
position x′ (with refreshed momentum) is taken as the proposal.

Again, a Metropolis–Hastings correction restores exact sampling. We conclude this subsec-
tion after examining two key MH-based kernels driven by energy gradients; MALA and
HMC. Although these methods dramatically outperform blind random walks, they remain
fundamentally local because of what we might consider to be the exponential barrier problem
(Kramers, 1940).

10 Background

Exponential Barrier Problem. For a metastable basin separated by a barrier of height
∆U , the mean first-passage (exit) time under single-temperature, local dynamics (e.g.,
MALA, HMC) follows an Arrhenius law

E[τexit]≍C exp(β ∆U),

where the prefactor C depends on curvatures, friction, and proposal details. Gradient
information or momentum can improve C but not the exponential dependence on β∆U .
Consequently, barrier crossing is exponentially rare.

2.2.3 Parallel Tempering

Because of the exponential-barrier problem, local MCMC kernels make only small, neighborhood-
limited moves and can become trapped in a single energy basin, rarely transitioning to others.
In molecular applications, these basins are metastable conformational states (e.g., distinct
folded, unfolded, or intermediate protein structures). Tempering–based ensemble samplers
mitigate this by running multiple replicas at distinct inverse temperatures and allowing them
to exchange information. We index inverse temperatures as

β1 = β > β2 > · · · > βm ≈ 0,

where βi = (kBTi)
−1 controls the sharpness of the Boltzmann weight e−βiU . Small βi (high Ti)

flatten the landscape and facilitate barrier crossing; large βi (low Ti) concentrate probability
near minima.

Definition (Replica ladder). Fix an ordered set βββ = (β1, . . . ,βm) with β1 = β and
0 < βi+1 < βi. For each i, define the tempered Boltzmann measure

µβi(dx) =
1

Zβi

e−βiU(x)
λ (dx), Zβi =

∫
Ω

e−βiU(x) dλ (x). (2.10)

At the highest temperature (βm ≈ 0), µβm approaches the base measure λ , enabling broad
exploration. The ensemble chain targets the product

µµµ(dx1, . . . ,dxm) =
m

∏
i=1

µβi(dxi),

and observables are computed from the physical-temperature component x1. The PT algo-
rithm alternates between two phases:

2.2 Classical MCMC Methods 11

Local sampling. Each replica evolves independently for τ steps using any kernel Ki that
preserves µβi (typically MALA or HMC). Because these updates act on disjoint coordinates,
the product kernel Klocal =

⊗m
i=1 Ki preserves µµµ and inherits detailed balance.

Replica exchange. After the local updates, select an adjacent pair (i, i+1) (e.g., cycle through
neighbors or choose with probabilities ρi,i+1) and propose the swap

(xi,xi+1) −→ (xi+1,xi). (2.11)

Then, accept this swap with probability

αswap = min
{

1,exp
[
(βi −βi+1)

(
U(xi+1)−U(xi)

)]}
, (2.12)

which is exactly the Metropolis–Hastings rule (2.8) applied to the two–replica target µβi⊗
µβi+1 with the deterministic swap proposal from Equation (3.3). We make this precise in
Chapter 3. This Metropolis criterion enforces detailed balance (see Appendix A.1 for a
derivation for arbitrary targets) for the ensemble while allowing high-temperature replicas to
help low-temperature ones overcome energy barriers.

Fig. 2.1 Temperature-ladder ensemble sampler. Each replica (colored curves) explores a
tempered density via local moves (small wiggles) and occasionally proposes swaps between
adjacent temperatures (arrows).

12 Background

In summary, coupling a spectrum of temperatures via swaps turns rare barrier crossings at
low temperature into ordinary moves in the expanded space Ωm. Each replica samples its own
Boltzmann distribution, and occasional exchanges let the target-temperature replica inherit
high-temperature tunneling moves. There is, however, no free lunch: tempering requires
simulating M replicas (more computationally expensive) and suffers from the temperature
overlap problem: in high dimensions, neighboring tempered distributions overlap weakly,
causing low swap acceptance and necessitating many replicas. (Predescu et al., 2004). We
make this more precise in Chapter 3.

2.3 Neural Transports

The temperature–overlap problem in PT is a severe algorithmic bottleneck: acceptable
swap rates require substantial overlap between adjacent tempered distributions, yet in
high–dimensional systems their natural overlap shrinks rapidly with system size. The
transport paradigm offers a constructive remedy: rather than relying on incidental overlap,
we learn maps that align neighboring tempered targets, creating overlap by design and
enabling high–acceptance swaps. Recent advances (Zhang et al., 2025b) show that neural
samplers—e.g., normalizing flows and diffusion models—can substantially reduce the num-
ber of replicas and the wall–clock cost of PT. This section develops the theoretical basis for
this approach.

2.3.1 Transport Paradigm

A central problem in computational statistics is to transform samples from one probability
distribution into another. Given probability measures π and ρ on a common measurable
space (Ω,F), the goal is to find a measurable map T : Ω → Ω such that, if x ∼ π , then T (x)
is (approximately) distributed as ρ . Equivalently, we seek a map for which the pushforward
measure

T#π(A) := π
(
T−1(A)

)
, A ∈ F ,

is close to ρ under some discrepancy D(T#π,ρ), e.g., Kullback–Leibler divergence, Wasser-
stein distance, or maximum mean discrepancy. Methods for constructing T typically trade off
expressivity (how rich a family of transformations is allowed) against tractability (whether
densities, Jacobians, inverses, or samples are easy to compute).

2.3 Neural Transports 13

Definition (Neural transport map). A neural transport is a parameterized map Tθ : Ω →
Ω (with parameters θ , typically neural-network weights) learned so that the pushforward
Tθ#π approximates a target ρ by minimizing a chosen discrepancy D(Tθ#π,ρ).

In parallel tempering, we employ transport maps between adjacent tempered distributions,

T (k)
θ

: µβk
−→ µβk+1

,

so that proposals aligned by T (k)
θ

achieve high acceptance and alleviate the usual overlap
bottleneck. Three broad classes of neural transports instantiate different points on the expres-
sivity–tractability spectrum: normalizing flows (invertible maps with tractable Jacobians),
diffusion models (score-based generative samplers), and flow matching (deterministic ODE
transports). In this thesis we focus on normalizing flows as the core transport architecture,
and subsequently provide a brief overview of diffusion- and flow-matching–based transports
to show how the same swap-and-transport framework extends naturally.

2.3.2 Normalizing Flows

Definition (Normalizing flow). A normalizing flow is a bijection

Tθ = T (K)
θ

◦ · · · ◦T (1)
θ

: Rd → Rd,

built as a composition of K invertible layers, each with tractable inverse and Jacobian
determinant. Given a base density p0 on Rd , the flow induces the target density pθ as the
pushforward Tθ# p0.

The compositional design is crucial: rather than learning a single monolithic bijection,
one stacks simple, easily invertible layers. Each layer effects a small deformation with
cheap log–determinant computation; their composition can represent highly non-linear and
multimodal transports while retaining numerical stability and tractability.

Definition (Change of variables). For a bijection T : Rd → Rd with inverse T−1, if
y = T (x) then

pY (y) = pX
(
T−1(y)

)∣∣det∇T−1(y)
∣∣.

Equivalently,
log pY (y) = log pX

(
T−1(y)

)
+ log

∣∣det∇T−1(y)
∣∣.

14 Background

Applied layer–by–layer, this yields

log pθ (x) = log p0
(
T−1

θ
(x)

)
−

K

∑
k=1

log
∣∣∣det∇T (k)

θ
(zk−1)

∣∣∣ , z0 =T−1
θ

(x), zk =T (k)
θ

(zk−1).

In our PT setting we will use p0 = µβk
and aim for pθ ≈ µβk+1

, training T (k)
θ

to minimize a

discrepancy D
(

T (k)
θ# µβk

, µβk+1

)
.

A flow is specified by its invertible layers T (k)
θ

. The only design choice is then the form of
them. Common, tractable choices include:

(i) Affine coupling layers (Dinh et al., 2017; Kingma and Dhariwal, 2018). Split x = (xa,xb)

and update
ya = xa, yb = xb ⊙ expsθ (xa)+ tθ (xa).

The Jacobian is block–triangular, so log |detJ|= ∑ j sθ (xa) j is O(d), and inversion is imme-
diate. Interleaving permutations ensures all coordinates are eventually transformed.

(ii) Autoregressive layers (Papamakarios et al., 2018; Kingma, Salimans, et al., 2017). Update
components sequentially,

yi = µθ (x1:i−1)+σθ (x1:i−1)xi, i = 1, . . . ,d.

The Jacobian is triangular, giving analytic log–det (sum of diagonals). In MAF, density
evaluation is fast (parallel) while sampling is sequential; in IAF, sampling is fast (parallel)
while exact density evaluation is costly.

(iii) Residual and continuous–time layers (Behrmann et al., 2019; Chen et al., 2019; Grath-
wohl et al., 2018). Use y = x+ uθ (x). If uθ is contractive (e.g., ∥∇uθ∥ < 1), invertibility
follows from the Banach fixed–point theorem (Banach, 1922) and

logdet(I +∇uθ) = ∑
k≥1

(−1)k+1

k
Tr
[
(∇uθ)

k
]
,

estimated via stochastic trace estimators. In the limit of infinitesimal layers one obtains a
continuous normalizing flow (CNF) governed by the neural ODE

dxt

dt
= fθ (xt , t),

d
dt

log pt(xt) =−Tr[∇xt fθ (xt , t)] .

In this thesis we employ affine coupling flows due to their linear-time sampling and log-
density evaluation, and because they have performed well on closely related molecular

2.3 Neural Transports 15

problems (e.g., (Klein, Foong, et al., 2023; Dinh et al., 2017)). Brief overviews of diffusion-
and flow-matching–based transports follow to illustrate how our swap-and-transport frame-
work extends beyond flows.

2.3.3 Diffusion Models

Diffusion models generate samples by learning the reverse of a simple noising process that
progressively corrupts data. They trade the strict invertibility of normalizing flows for greater
expressivity in high dimensions and excellent sample quality.

Definition (Diffusion process). A diffusion model comprises (i) a forward process that
adds noise to data and (ii) a reverse process that learns to denoise by estimating the score
∇x log pt(x) of the forward marginals. In continuous time, a common choice for the
forward process is the variance–preserving (VP) SDE

dxt = −1
2 β (t)xt dt +

√
β (t)dWt ,

where β (t)>0 is a noise schedule and Wt is standard Brownian motion. This SDE admits
tractable Gaussian conditionals q(xt | x0), enabling direct sampling at any time t.

A fundamental result (reverse–time diffusion) gives the reverse SDE

dxt =
[
−1

2 β (t)xt − β (t)∇x log pt(xt)
]

dt +
√

β (t)dW̄t ,

which evolves from noise back to data. The only unknown is the score ∇x log pt(x); diffusion
models approximate it with a neural network sθ (x, t)≈ ∇x log pt(x).

In practice one samples (t,x0,εεε) and forms a noised datum

xt =
√

ᾱt x0 +
√

1− ᾱt εεε, εεε ∼ N (0, I),

where ᾱt ∈ (0,1] encodes the noise schedule (discrete DDPM (Ho et al., 2020)) or its
continuous analogue (VP SDE). Since q(xt | x0) is Gaussian, its score is known in closed
form, and one minimizes a weighted denoising score–matching objective

L (θ) = Et,x0,εεε

[
w(t)

∥∥sθ (xt , t) − ∇xt logq(xt | x0)
∥∥2
]
,

with a suitable weight w(t). At sampling time, one integrates the reverse SDE (or the
associated probability–flow ODE) from pure noise to obtain data–like samples.

16 Background

2.3.4 Flow Matching

Flow matching learns a continuous–time transport by training a time–dependent vector field
whose flow pushes a simple source distribution to a complex target. It retains the expressivity
of neural ODE transports while avoiding many of their training burdens, and has emerged as
a strong alternative to diffusion–based samplers (Lipman et al., 2023).

Definition (Flow matching). Given a source p0 and a target p1 on Rd , flow matching
learns a measurable vector field vθ : Rd × [0,1]→Rd whose induced ODE

dxt

dt
= vθ (xt , t), x0 ∼ p0,

generates a probability path (pt)t∈[0,1] satisfying the continuity equation

∂t pt +∇· (pt vθ) = 0,

with p1 (approximately) matching the target.

Let (pt)t∈[0,1] be a chosen bridging path from p0 to p1 (e.g., linear interpolation in data
space). The ideal vector field v⋆ that transports this path solves the continuity equation and,
for many choices of pt , admits a closed-form conditional target field. Training then regresses
vθ to this target in mean–squared error.

For the simple linear path xt = (1− t)x0 + tx1 with x0 ∼ p0 and x1 ∼ p1 independent, the
conditional flow matching (CFM) target is

u⋆(x, t | x1) =
x1 −x
1− t

(t < 1),

because dxt/dt = x1 − x0 and, conditional on (x, t,x1), one has x0 = x−tx1
1−t . A practical

objective is therefore

LCFM(θ) = Et∼U (0,1), x1∼p1, x∼pt(·|x1)

[∥∥vθ (x, t)−u⋆(x, t | x1)
∥∥2

]
,

optionally with a time weight w(t) and a small cutoff t ≤ 1− ε to avoid the (1− t)−1

singularity. This direct regression side–steps reverse–time SDEs and likelihood Jacobians:
once trained, one integrates the ODE from t = 0 to t = 1 (starting at x0 ∼ p0) to obtain
samples from p1. Alternatives include more sophisticated bridges (e.g., Gaussian couplings)
that yield different closed–form targets u⋆ but the same regression principle; see (Lipman
et al., 2023) for derivations and variants.

2.4 Graph Neural Networks 17

2.4 Graph Neural Networks

Designing neural networks that update molecular coordinates imposes symmetry constraints
that standard architectures do not natively satisfy. Molecules are naturally represented
as graphs (atoms as nodes, bonds as edges) with variable size and rich geometry. In our
flow–based coordinate–transport setting we need models that predict new coordinates while
respecting the fundamental symmetries of the system. This section sets out the GNN
formalism we use and the symmetry requirements for molecular coordinate transformation.

2.4.1 Molecular Representation

Definition (Molecular graph). A molecular system is an undirected, attributed graph
G = (V,E) with |V|= N atoms. Each node vi ∈ V carries a feature vector hi ∈Rdv (atom
type, charge, etc.) and a coordinate xi ∈ R3; each edge (i, j) ∈ E carries a bond feature
ei j ∈ Rde . Let H = [h1, . . . ,hN]

⊤ ∈ RN×dv and X = [x1, . . . ,xN]
⊤ ∈ RN×3.

For coordinate prediction, the network must be permutation equivariant (relabeling atoms
only relabels outputs) and SE(3) equivariant (rigid motions of the input produce the same
rigid motion at the output). By contrast, for scalar node or graph properties one requires
permutation invariance and SE(3) invariance.

Definition (Permutation equivariance). Let P ∈ {0,1}N×N be a permutation matrix
acting on rows (atom order). A valid coordinate–predictive network fθ must satisfy

fθ

(
PH, PX

)
= P fθ (H,X). (2.13)

When edge features are used, they transform as E 7→ PEP⊤; the same equivariance
condition applies.

Definition (SE(3) equivariance). For any rotation R ∈ SO(3) and translation t ∈ R3,
denoting 1 the N–vector of ones, we require

fθ

(
H, XR+1t⊤

)
= fθ (H,X)R+1t⊤. (2.14)

This guarantees that predicted coordinates transform consistently under rigid motions, as
mandated by physical symmetry.

18 Background

Although a molecule with N atoms lives in a 3N–dimensional configuration space, chemical
connectivity induces strong dependencies (e.g. bond lengths/angles). GNNs exploit these
structural priors by operating directly on G, enabling models that satisfy (2.13)–(2.14) while
learning effective coordinate updates for our transport maps.

2.4.2 Neural Architectures

Classical graph architectures differ mainly in how they aggregate neighborhood information
and whether they encode geometry. For coordinate prediction, the key requirements from §2.4
are permutation equivariance (2.13) and SE(3) equivariance (2.14). Below we summarize
the families we build on.

Definition (Message–Passing Neural Networks). At layer ℓ, node states are updated via
neighbor messages:

m(ℓ)
i =

⊕
j∈N (i)

M(ℓ)
(

h(ℓ)
i , h(ℓ)

j , ei j, ψ(ri j)
)
, h(ℓ+1)

i =U (ℓ)
(

h(ℓ)
i , m(ℓ)

i

)
,

where ri j = x j − xi, ψ optionally encodes geometric inputs (e.g., distances),
⊕

is a
permutation–invariant aggregator (sum/mean/max), and M(ℓ),U (ℓ) are learned maps.

MPNNs are permutation equivariant by construction (the same parameters are shared across
nodes and

⊕
is invariant), but they are not SE(3)–equivariant unless ψ restricts geometry

to rotation/translation–invariant quantities (e.g., ∥ri j∥). Purely feature–based MPNNs also
have a limited receptive field; capturing long–range effects requires depth, which can induce
over–smoothing of node states.

Definition (Graph Convolutional Networks). A GCN layer applies a first–order spectral
filter:

H(ℓ+1) = σ

(
D̂−1/2ÂD̂−1/2 H(ℓ)W(ℓ)

)
,

with Â = A+ I and D̂ its degree matrix.

GCNs are a specific MPNN with fixed, degree–normalized weights. They retain permutation
equivariance but, like generic MPNNs, do not enforce SE(3) equivariance and inherit locality
limitations.

2.4 Graph Neural Networks 19

Definition (Graph Attention Networks). GATs use learned attention coefficients to
weight neighbors:

αi j =
exp

(
LeakyReLU

(
a⊤[Whi ∥Wh j]

))
∑k∈N (i) exp

(
LeakyReLU

(
a⊤[Whi ∥Whk]

)) , h(ℓ+1)
i = σ

(
∑

j∈N (i)
αi j Wh j

)
.

Attention improves expressivity over fixed weights while preserving permutation equiv-
ariance. However, standard GATs still aggregate locally and, unless geometry is encoded
invariantly, they are not SE(3)–equivariant.

Definition (Graph Transformers). Self–attention with global receptive field augmented
by structural biases:

Attn(Q,K,V) = softmax
(

QK⊤+B√
dk

)
V,

where B encodes graph structure (e.g., Laplacian/shortest–path/radial bases).

Graph transformers couple global attention with graph priors, enabling long–range interac-
tions crucial for allostery and cooperative motions. Vanilla formulations are permutation
equivariant but not SE(3)–equivariant unless geometry enters via invariant encodings only;
direct coordinate prediction then becomes inconsistent with (2.14).

Definition (E(3)–equivariant GNNs). Equivariant layers update features and coordinates
using only E(3)–invariant scalars and equivariant vector fields. A common form is

m(ℓ)
i j = φm

(
h(ℓ)

i ,h(ℓ)
j ,∥r(ℓ)i j ∥

2,ei j
)
, x(ℓ+1)

i = x(ℓ)i +∑
j ̸=i

φx
(
m(ℓ)

i j
)(

x(ℓ)i −x(ℓ)j
)
,

h(ℓ+1)
i = φh

(
h(ℓ)

i ,∑
j

m(ℓ)
i j

)
, with r(ℓ)i j = x(ℓ)j −x(ℓ)i .

These constructions guarantee permutation equivariance and SE(3) equivariance by de-
sign.

We conclude this geometric section arguing that for predicting coordinates consistently with
the symmetries in §2.4, one must use architectures that are permutation equivariant and SE(3)
equivariant. E(3)–equivariant GNNs satisfy both and are therefore the appropriate choice for
learning coordinate transports.

20 Background

2.5 Related Work

Having established the theoretical background, we briefly review how the community has
addressed the coupled problems of barrier crossing, temperature overlap, and geometric
inductive bias in molecular sampling. We focus on neural–enhanced methods for accelerating
parallel tempering (PT) via learned transports and on graph neural networks (GNNs) for
molecular structure.

A central line of work addresses the temperature–overlap problem in PT by learning maps
that increase overlap between adjacent tempered targets. (Zhang et al., 2025a) demonstrate
that neural samplers—normalizing flows and diffusion models—can transport configurations
across temperatures with high swap acceptance, thereby reducing the number of required
replicas and overall cost. Related work on augmented normalizing flows for molecular
dynamics, exemplified by Timewarp (Klein, Foong, et al., 2023), learns expressive invertible
transforms from simulation data and offers design ideas relevant to our setting. Most closely
related, Progressive Tempering Sampler with Diffusion (PTSD) integrates PT with a sequence
of diffusion models: a guidance composition of high-temperature models proposes lower-
temperature samples, followed by light MCMC refinement, yielding orders-of-magnitude
gains in target-evaluation efficiency (Rissanen et al., 2025).

Concurrently, the modeling capacity of normalizing flows has advanced. (Zhai et al., 2024)
argue that, with suitable architectures (e.g., transformer–based autoregressive flows), flows
can match diffusion–model sample quality while retaining exact likelihoods. At the same
time, applying neural samplers directly to unnormalized Boltzmann densities remains delicate:
(He et al., 2025) analyze failure modes such as mode collapse and training instabilities. On
the theory side, universality guarantees for coupling–based flows (Draxler, Wahl, et al.,
2024) and architectural innovations such as Free–form Flows (Draxler, Sorrenson, et al.,
2023) broaden the class of invertible transformations available to practitioners. Orthogonally,
Progressive Inference-Time Annealing (PITA) trains a ladder of diffusion models across
temperatures and performs inference-time temperature annealing via a Feynman–Kac/SMC
corrector, enabling equilibrium sampling of small N-body and peptide systems in Cartesian
coordinates with substantially fewer energy evaluations (Akhound-Sadegh et al., 2025).

Recent efforts emphasize molecular applications, transferability, and adherence to physical
constraints. (Tan, Bose, et al., 2025) introduce Sequential Boltzmann Generators that
achieve equilibrium sampling of tetra– and hexa–peptides in Cartesian coordinates using
transformer–based flows. Transferability across systems without retraining is addressed by
(Klein and Noé, 2024), while (Tan, Hassan, et al., 2025) demonstrate large–scale, zero–shot
generalization with a high–capacity transferable flow.

2.6 Summary 21

Beyond likelihood–based transports, geometry–aware approaches incorporate molecular
symmetries and forces. Equivariant flow–matching methods (Klein, Krämer, et al., 2023)
preserve SE(3) structure during training, and force–guided bridge matching (Yu et al.,
2024) injects physical gradients into the objective. Alternative perspectives learn dynamical
operators directly, e.g., Implicit Transfer Operator Learning (Schreiner et al., 2023). Training
methodology has likewise progressed: stabilized rectified–flow objectives (Lee et al., 2024)
and manifold–aware normalizing flows (Flouris and Konukoglu, 2023) address rugged loss
landscapes and constrained configuration spaces.

In summary, the convergence of PT with learned transports and geometric deep learning
has opened a practical path toward scalable equilibrium sampling: PT supplies global
connectivity; neural transports supply local efficiency; and symmetry–aware representations
preserve physical consistency. Open challenges remain in achieving broad transfer across
molecular families while maintaining theoretical guarantees and computational efficiency.
The next chapter develops our methodology within this emerging landscape.

2.6 Summary

This chapter introduced the background for neural–enhanced PT in molecular equilibrium
sampling. We reviewed how the exponential barrier problem limits local MCMC methods,
how PT addresses barrier crossing yet suffers from temperature overlap in high dimensions,
and how learned transports, particularly normalizing flows, can construct overlap by design.
We also outlined the role of GNNs in providing permutation and SE(3)–consistent inductive
biases for coordinate prediction. These ingredients motivate the methodological development
that follows: learning bijective, geometry–aware transports to improve swap acceptance
while preserving exact sampling guarantees.

Chapter 3

Methodology

Everything should be made as simple as possible,
but not simpler.

— Albert Einstein (1879–1955)

As established in the previous chapter, the core difficulty in PT is the exponential decay of
adjacent-replica swap acceptance as molecular complexity grows. Classical fixes tune the
temperature ladder (e.g., reducing gaps), but this drives the number of replicas to grow expo-
nentially (Predescu et al., 2004). Instead, neural transport maps learn transformations that
construct overlap between temperature distributions, rather than relying on incidental overlap.
This chapter develops such transports and details our methodology for PT acceleration.

3.1 Problem Formulation

Let (Ω,F ,λ) be the molecular configuration space with Lebesgue measure λ , where Ω =

R3N are Cartesian coordinates of an N-atom system (or a smooth constraint manifold). All
target measures are assumed absolutely continuous w.r.t. λ , hence admit densities p= dP/dλ .
In particular, the tempered Boltzmann density and corresponding measure are

pβ (x) = Z−1
β

e−βU(x), Pβ (dx) = pβ (x)λ (dx), β > 0, (3.1)

with partition function Zβ and potential energy U(x).

Parallel tempering (PT) maintains M replicas with joint state in (ΩM,F⊗M). Each replica
evolves via a local Markov kernel that preserves its tempered Boltzmann measure; PT
alternates these local steps with swap moves between replica pairs (see Subsection 2.2.3).

3.1 Problem Formulation 23

After every L single-replica steps, a swap kernel acts on a chosen pair: given (x,y) ∈ Ω×Ω,
propose (y,x) and accept/reject by Metropolis–Hastings.

To analyze a specific adjacent pair (k,k+1), we work on Ω×Ω with product target

Π := Pβk
⊗Pβk+1

, π(x,y) = pβk
(x) pβk+1

(y) (density w.r.t. λ ⊗λ).

For current (x,y)∼ Π and proposal kernel Q
(
(x,y),d(x′,y′)

)
, the MH acceptance is

α
(
(x,y),(x′,y′)

)
= min

{
1,

pβk+1
(x′) pβk

(y′)Q
(
(x′,y′),d(x,y)

)
pβk

(x) pβk+1
(y)Q

(
(x,y),d(x′,y′)

) }
. (3.2)

See (Douc and Cor, 2015) for a concise derivation on product spaces and detailed balance.

For the naive coordinate swap g(x,y)= (y,x), the proposal is deterministic, so Q
(
(x,y),d(x′,y′)

)
=

δ(y,x)
(
d(x′,y′)

)
and the Hastings factor cancels. With (x′,y′) = (y,x) we obtain

αswap(x,y) = min

{
1,

pβk
(y) pβk+1

(x)
pβk

(x) pβk+1
(y)

}
.

Specializing to Boltzmann densities (3.1), normalizing constants cancel and

pβk
(y) pβk+1

(x)
pβk

(x) pβk+1
(y)

= exp
[
(βk −βk+1)

(
U(y)−U(x)

)]
,

hence the naive swap acceptance is

αnaive(x,y) = min
{

1, exp
[
(βk −βk+1)

(
U(y)−U(x)

)]}
(3.3)

Temperature-Overlap Problem. For high-dimensional molecular systems,

E(x,y)∼Pβk
⊗Pβk+1

[
αnaive(x,y)

]
→ 0

as system complexity increases, because configurations typical at one temperature have
negligible probability under the other, yielding vanishing overlap.

To overcome this, we replace naive swaps by a learned transport swap. Let Tθ : Ω → Ω be
an invertible, measurable map with inverse T−1

θ
. Define the deterministic proposal

g(x,y) =
(
T−1

θ
(y), Tθ (x)

)
, (3.4)

24 Methodology

which is an involution since T−1
θ

(Tθ (x)) = x and Tθ (T−1
θ

(y)) = y, hence g◦g = id. A plain
deterministic proposal Q

(
(x,y), ·

)
= δg(x,y)(·) requires mutual support to use the standard

MH ratio (3.2); for a Dirac proposal this holds exactly when g◦g = id. In the deterministic
case, the acceptance takes the form

α(x,y) = min

{
1,

π
(
g(x,y)

)∣∣detJg(x,y)
∣∣

π(x,y)

}
, (3.5)

whose derivation is given in Appendix A.3.

Plugging (3.4) into (3.5) and using change of variables yields the flow-enhanced acceptance

αflow(x,y) = min
{

1, exp
[
∆flow(x,y)

]}
, (3.6)

with

∆flow(x,y) =−βk U
(
T−1

θ
(y)

)
−βk+1U

(
Tθ (x)

)
+βk U(x)+βk+1U(y)

+ log
∣∣detJTθ

(x)
∣∣+ log

∣∣detJT−1
θ

(y)
∣∣. (3.7)

The Jacobian terms are the Radon–Nikodym derivatives of the pushforwards Tθ ♯Pβk
and

T−1
θ

♯Pβk+1
(see Appendix A.4 for a derivation).

Finally, we state the exactness guarantee. In Appendix A.1 we prove detailed balance for MH
with a stochastic proposal under mutual support. The following lemma gives the deterministic
counterpart.

Lemma 3.1.1 (MH with an involutive deterministic proposal). Let g : Ω×Ω → Ω×Ω be a
C1 involution (g◦g = id). Then the MH kernel with deterministic proposal (x,y) 7→ g(x,y)
and acceptance (3.5) satisfies detailed balance w.r.t. the product target density π(x,y) =
pβk

(x)pβk+1
(y).

Corollary 3.1.2 (Flow–swap preserves Pβk
⊗Pβk+1

). Let Tθ : Ω → Ω be a C1 diffeomorphism
with inverse T−1

θ
, and define g(x,y) = (T−1

θ
(y), Tθ (x)). Then g is a C1 involution and, by

Lemma 3.1.1, the MH kernel satisfies detailed balance for Π = Pβk
⊗Pβk+1

with acceptance
given by (3.6).

Thus, flow-enhanced PT remains exact while potentially achieving substantially higher swap
acceptance than naive exchanges. We now develop neural architectures for learning effective
transports Tθ .

3.2 Architectures 25

3.2 Architectures

We propose three architectures that trade off molecular inductive bias and expressive power:
(1) coordinate-only flows that treat molecules as flat vectors; (2) graph-based flows that
encode local chemical connectivity and partial symmetries; and (3) transformer flows that
drop geometric constraints to capture global interactions via attention.

All models are normalizing flows adapted to PT. The coordinate-only design follows Re-
alNVP (Dinh et al., 2017). The graph and transformer designs borrow ideas from Time-
warp (Klein, Foong, et al., 2023) but target a different objective: we learn potential–energy
transports between temperatures for PT swaps, rather than temporal evolution in MD.

3.2.1 PTSwapFlow

We start with a minimal baseline trained on a single-peptide dataset and with no explicit
chemical structure. It treats each molecule as an unlabeled point cloud, and is therefore
peptide-specific: it does not generalize to unseen systems.

Let x ∈ R3N be flattened Cartesian coordinates. PTSwapFlow stacks RealNVP coupling
layers with alternating atomic masks. A binary mask m ∈ {0,1}3N groups full atomic triplets:

m3 j+k = j mod 2, j ∈ {0, . . . ,N −1}, k ∈ {0,1,2} (3.8)

This groups complete atomic coordinates (all three spatial dimensions) together, alternating
between even and odd atoms across coupling layers. The coupling transformation computes
scale and shift parameters via multilayer perceptron:

s, t = MLP(x⊙ (1−m))

and applies the affine transformation:

y = x⊙ (1−m)+(x⊙m)⊙ exp(s)+ t⊙m (3.9)

The exponential ensures positive scaling factors, guaranteeing invertibility. The affine form
provides computational tractability while maintaining sufficient expressivity for molecular
coordinate transformations. The inverse transformation recovers the original coordinates
analytically:

x = y⊙ (1−m)+
(y⊙m)− t

exp(s)
⊙m (3.10)

26 Methodology

Note that exact invertibility follows because the conditioning subset x⊙ (1−m) passes
through unchanged, eliminating any information loss. The Jacobian matrix J = ∂y

∂x has
special structure due to the coupling design:

Ji j =



1 if i = j and mi = 0 (unchanged coordinates)

exp(si) if i = j and mi = 1 (transformed coordinates)
∂ si
∂x j

xi exp(si)+
∂ ti
∂x j

if i ̸= j,mi = 1,m j = 0 (coupling)

0 otherwise

Since si and ti depend only on unchanged coordinates (m j = 0), the matrix has block structure
with determinant ∏i:mi=1 exp(si), yielding:

log |detJ|= ∑
i:mi=1

si (3.11)

This closed-form log-determinant enables exact likelihoods and plugs directly into the swap
acceptance in Equation (3.7). A worked 2D example is given in Appendix A.2.

However, this coordinate-only approach lacks chemical awareness. The natural progression
was therefore to enhance our structure-agnostic flow with molecular information. Our
ultimate objective was to develop transferable flows that can generalize across unseen
molecular systems. The most straightforward extension would involve augmenting atomic
coordinates within the RealNVP-style coupling layers with learnable chemical element
embeddings (C, H, N, O). However, this naive concatenation strategy appeared fundamentally
flawed. Simply appending atom type embeddings to coordinates would still treat molecules
as unstructured collections of labeled points, completely ignoring the connectivity patterns
that define molecular behavior and properties. Recognizing these limitations, we opted for
a more sophisticated framework as next that explicitly incorporates graph-based molecular
connectivity as our primary approach to encoding chemical information.

3.2.2 PTSwapGraphFlow

Rather than treating molecules as unstructured coordinate vectors, the graph-aware archi-
tecture models each conformation as a radius graph built from 3D coordinates. Nodes are
atoms with types τi ∈ {H,C,N,O}, and edges connect spatial neighbors within a distance
threshold τ . In this setting, the transport Tθ is parameterized by symmetry-aware coupling
layers that use local message passing to compute per-atom scale and shift. Concretely, we
map x(Tlow) 7→ x(Thigh) = Tθ (x(Tlow),τττ), extending the coordinate-only design by conditioning

3.2 Architectures 27

on atom types τττ = {τ1, . . . ,τN}. While a fully connected graph would maximize expressivity,
we adopt a high-bias, geometry-respecting choice, sparse, distance-based neighborhoods,
for stability and efficiency, leaving the low-bias alternative to the transformer in the next
subsection.

The key enhancement is to build node features and aggregations from invariant quantities
wherever possible, preserving molecular symmetries by construction. Atom i carries a
learned type embedding hi =Wembed[eτi] ∈ Rdh , and its neighborhood is

Ni = { j ̸= i : ∥x j −xi∥2 < τ nm}. (3.12)

These neighborhoods define the edges of the radius graph and supply local chemical context.

Each coupling layer retains the affine update from Equations (3.9)–(3.10), but the scale and
shift are now produced by graph-based message passing. We summarize the neighborhood
by an invariant scalar and a vector aggregate:

d̄(ℓ)
i =

1
|Ni| ∑

j∈Ni

∥∥x(ℓ)j −x(ℓ)i

∥∥
2, (3.13)

s(ℓ)i = MLP(ℓ)
s

(
[hi, d̄(ℓ)

i]
)
, (3.14)

t(ℓ)i =
MLP(ℓ)

t (hi)

|Ni| ∑
j∈Ni

(
x(ℓ)j −x(ℓ)i

)
. (3.15)

Here, the same small networks MLP(ℓ)
s and MLP(ℓ)

t are shared across nodes, and the sums
over Ni implement permutation-invariant message aggregation.

This asymmetric construction reflects the different geometric roles of scaling and translation.
The scale s(ℓ)i depends only on scalar neighborhood statistics and type, making it rotationally
and translationally invariant while adapting to local density (small scales in crowded regions
to avoid clashes, larger scales in sparse regions). In contrast, the shift t(ℓ)i is a type-weighted
average of relative displacement vectors, preserving full directional information and yielding
an E(3)-equivariant update:

t(ℓ)i (Rx+ c) = R t(ℓ)i (x), ∀R ∈ SO(3), c ∈ R3.

The coupling then applies the per-atom isotropic affine map on the masked subset and leaves
the complement unchanged, maintaining exact invertibility as before.

28 Methodology

To batch molecules with different sizes, we pad to the maximum number of atoms N in the
batch using dummy atoms (type −1, zero coordinates) and apply masks so that message
passing and Jacobian computations ignore padded positions.

3.2.3 PTSwapTransformerFlow

Whereas graph-based flows emphasize local chemistry, the transformer variant deliberately
relaxes geometric constraints and models global interactions via self–attention (Vaswani
et al., 2023). This is a conscious trade-off: we give up explicit E(3)-equivariance in exchange
for higher expressivity, using fully connected attention to capture long-range correlations
that empirically improve swap acceptance.

Following the augmented-flow idea of Timewarp (Klein, Foong, et al., 2023), we extend the
state with per-atom auxiliary variables. Instead of modeling only µβ (x), the model targets
the joint

µaug(x,v) ∝ exp
(
−U(x)/(kBT)

)
N (v;0,I), (3.16)

where vi ∼ N (0,I) are nonphysical latents. These latents carry no chemistry; they enlarge
the transformation space and, coupled symmetrically across atoms, preserve permutation
equivariance.

The flow stacks L coupling layers that alternate the transformed variable type: layer ℓ updates
all coordinates if ℓ is even, and all auxiliaries if ℓ is odd. This schedule lets each variable
type condition the other while maintaining exact invertibility. Padding for variable-sized
molecules again uses dummy atoms (type -1, zero coordinates/latents) together with a fixed
attention mask M ∈ {0,1}N across all layers; masked positions receive −∞ logits before
softmax, so they never attend or get attended to.

At layer ℓ, we build per-atom features by concatenation

f(ℓ)i =
[

hi, x(init)
i , v(init)

i , z(ℓ)cond,i, RFF
(
x(init)

i
)]

, (3.17)

where hi ∈ Rdh is the atom type embedding, z(ℓ)cond,i = v(ℓ)i when updating coordinates (even

ℓ), and z(ℓ)cond,i = x(ℓ)i when updating auxiliaries (odd ℓ). Random Fourier features term

RFF(x(init)
i) provides a fixed random sinusoidal positional encoding that supplies smooth,

distance-aware cues to attention.

3.2 Architectures 29

We implement random Fourier features (RFF) by sampling frequencies ωωωr ∼ N (0, ℓ−2I)
and phases br ∼ Unif[0,2π] once at initialization, and defining

RFF(x) =
√

2
m

[
cos(ΩΩΩx+b)
sin(ΩΩΩx+b)

]
∈ RdRFF, m = 1

2dRFF, ΩΩΩ =

ωωω⊤
1
...

ωωω⊤
m

 , b =

b1
...

bm

 .

(3.18)
The inner products of these features approximate an RBF kernel, thereby furnishing rich
positional signals without hard-coding geometry (Rahimi and Recht, 2007).

Each coupling layer computes flow parameters in three steps. First, an input projection maps
features to the model width:

MLPin : RN×dfeat → RN×dmodel, F(ℓ) = MLPin
(
f(ℓ)1 , . . . , f(ℓ)N

)
,

Second, multi-head self–attention captures global dependencies under the padding mask

F̃(ℓ) = MHA
(
F(ℓ),F(ℓ),F(ℓ);M

)
.

Third, separate heads predict per-atom, per-axis scale and shift

s(ℓ) = MLPs
out

(
F̃(ℓ)

)
∈ RN×3,

t(ℓ) = MLPt
out

(
F̃(ℓ)

)
∈ RN×3.

The coupling transformation updates the target variables z(ℓ) while leaving conditioning
variables unchanged:

z(ℓ+1)
i = z(ℓ)i ⊙ exp(s(ℓ)i)+ t(ℓ)i (3.19)

with analytical inverse similar to Equation (3.10). The log-determinant computation follows
the same principle as Equation (3.11), summing the scale parameters across all coupling
layers for both coordinate and auxiliary variable transformations. The attention mechanism
enables each atom’s transformation to depend on all other atoms simultaneously, capturing
global molecular correlations without distance constraints while maintaining exact invertibil-
ity through the coupling structure.

30 Methodology

3.3 Molecular Symmetries

Our three architectures offer different symmetry guarantees. PTSwapFlow has no built–in
geometric symmetry and relies on data augmentation. PTSwapTransformerFlow is permuta-
tion–equivariant (via shared per-atom processing and attention with a padding mask) but is not
E(3)–equivariant; any rotational/translation behavior is learned from data. PTSwapGraph-
Flow incorporates symmetry-aware components and enjoys partial theoretical guarantees.

For the graph architecture, consider the E(3) action x 7→ Rx+ c with R ∈ SO(3) and c ∈ R3.
The coupling layer (Equation (3.9)) uses per-atom scales si and shifts ti designed to respect
these symmetries where possible. From Equation (3.14), the scales depend only on invariant
quantities,

si = exp
(

MLPs
(
[hi, d̄i]

))
, d̄i =

1
|Ni| ∑

j∈Ni

∥x j −xi∥2,

so si(Rx+ c) = si(x) because hi is coordinate–independent and pairwise distances are invari-
ant. From Equation (3.15), the shifts are scalar–weighted sums of relative vectors,

ti =
ci

|Ni| ∑
j∈Ni

(x j −xi), ci = MLPt(hi),

hence ti(Rx+ c) = R ti(x) (equivariance) because ci is invariant and (x j −xi) rotates.

Combining these in the per-atom affine update yi = exp(si)xi+ ti yields rotation equivariance

yi(Rx) = exp(si)Rxi +Rti = R
(

exp(si)xi + ti
)
= Ryi(x).

Exact translation equivariance, however, fails in general

yi(x+ c) = exp(si)(xi + c)+ ti = yi(x)+ exp(si)c,

which equals yi(x)+ c only if si = 0. A standard remedy is the centroid reparameterization
yi = µ +exp(si)(xi−µ)+ ti, with µ = 1

N ∑k xk, which restores exact translation equivariance
while preserving invertibility; we show empirically in Section 4.4, this variant yields trans-
lation errors at numerical tolerance. Permutation equivariance is achieved by constructing
radius graphs from coordinates (not indices) and using sum aggregations; batching with
variable N is handled via padding masks so that padded nodes neither send nor receive
messages. Under these choices, the graph parameterization is permutation–equivariant, rota-
tion–equivariant, and approximately translation–equivariant (or exactly so under the centroid
form). We empirically validate these claims in Section 4.4.

3.4 Learning Objective 31

3.4 Learning Objective

Training the flow for PT amounts to learning a bijection Tθ that constructs overlap between
adjacent temperatures so that swap proposals are readily accepted. Formally, let pβk

, pβk+1
be

the Boltzmann densities at βk and βk+1. The transport desideratum is as follows

x ∼ Pβk
Tθ (x)∼ Pβk+1

, y ∼ Pβk+1
T−1

θ
(y)∼ Pβk

.

Equivalently, the pushforwards Tθ ♯Pβk
and T−1

θ
♯Pβk+1

should match the opposite targets. A
natural way to encode this is the bidirectional KL divergence (Kullback and Leibler, 1951)

LKL(θ) = DKL
(
Pβk+1

∥ Tθ ♯Pβk

)
+DKL

(
Pβk

∥ T−1
θ

♯Pβk+1

)
,

which vanishes iff Tθ is an exact transport between the two. Change of variables gives the
standard identity that minimizing the bidirectional KL divergence LKL(θ) is equivalent to
minimizing the negative log-likelihood (NLL) of each temperature’s samples evaluated under
the flow-transformed distribution of the other (see A.6)

LNLL(θ) =−Ey∼pβk+1

[
log

(
pβk

(T−1
θ

(y)) |detJT−1
θ

(y)|
)]

−Ex∼pβk

[
log

(
pβk+1

(Tθ (x)) |detJTθ
(x)|

)]
. (3.20)

Using − log pβ (z) = βU(z)+ logZβ , and discarding θ -independent constants (logZβ), we
obtain the per-temperature NLL terms

LNLL(θ) = Ey∼pβk+1

[
βk U

(
T−1

θ
(y)

)
− log |detJT−1

θ

(y)|
]

+Ex∼pβk

[
βk+1U

(
Tθ (x)

)
− log |detJTθ

(x)|
]
. (3.21)

Intuitively, each bracket rewards the flow for mapping samples from one temperature into
high-density regions of the other (small βU), while penalising unjustified local expansion
via the Jacobian. This is precisely the mechanism by which the flow creates overlap between
marginals. It is noticeable that this expression is quite similar to the flow-enhanced acceptance
criterion ∆flow introduced in Equation (3.7). In particular, a direct rearrangement yields the

32 Methodology

per-pair identity

βk+1U
(
Tθ (x)

)
− log

∣∣detJTθ
(x)

∣∣
+βkU

(
T−1

θ
(y)

)
− log

∣∣detJT−1
θ

(y)
∣∣︸ ︷︷ ︸

LNLL, pair(x,y;θ)

=−∆flow(x,y)+βkU(x)+βk+1U(y)+ const.

(3.22)

Hence, for fixed (x,y),

∇θ LNLL,pair(x,y;θ) = ∇θ

[
−∆flow(x,y)

]
.

This formalises the statement that NLL minimisation pushes in the same direction as in-
creasing per-pair acceptance; the extra input-energy sum βkU(x)+βk+1U(y) is a baseline
independent of θ that sets how hard it is for a particular pair to satisfy ∆flow ≥ 0.

However, as introduced in Section 3.2, the PTSwapTransformerFlow operates on augmented
states. For the adjacent pair we write

zlow = (x, vx), zhigh = (y, vy),

where x,y ∈ Ω are positions and vx,vy ∈R3N are toy (non-physical) velocities drawn from the
temperature-independent standard Gaussian. The target at inverse temperature β factorises
then as

pβ (x,v) ∝ exp
(
−β U(x)− 1

2∥v∥2).
Let the forward map send zlow 7→ z′high = (x′,v′x) := Tθ (x,vx) (low→high), and the inverse
map send zhigh 7→ z′low = (y′,v′y) := T−1

θ
(y,vy) (high→low). Replacing the NLL brackets by

their augmented versions yields

LNLL,aug(zlow,zhigh;θ) =
[
βk+1U(x′)+ 1

2∥v′x∥2 − log
∣∣detJTθ

(x,vx)
∣∣]

+
[
βk U(y′)+ 1

2∥v′y∥2 − log
∣∣detJT−1

θ

(y,vy)
∣∣], (3.23)

where JTθ
(x,vx) denotes the full Jacobian of the augmented map Tθ : R6N→R6N with respect

to the concatenated variables (x,vx) (analogously for T−1
θ

).

3.5 Training 33

The corresponding augmented acceptance exponent, consistent with Eq. (3.7), is

∆aug(zlow,zhigh) =−βk U(y′) − βk+1U(x′) + βk U(x) + βk+1U(y)

− 1
2∥v′y∥2 − 1

2∥v′x∥2 + 1
2∥vx∥2 + 1

2∥vy∥2

+ log
∣∣detJTθ

(x,vx)
∣∣+ log

∣∣detJT−1
θ

(y,vy)
∣∣. (3.24)

Exactly as in the positions-only identity, we then have

LNLL,aug(zlow,zhigh;θ)=−∆aug(zlow,zhigh)+βk U(x)+βk+1U(y)+ 1
2∥vx∥2+ 1

2∥vy∥2+const,
(3.25)

so for a fixed pair (zlow,zhigh), ∇θ LNLL,aug = ∇θ

(
−∆aug

)
. In practice, we made an error, as

we forgot to including the kinetic terms which ended up being important: without them,
the model could artificially inflate log |detJ| by rescaling the velocity channels while barely
changing positions. The 1

2∥v∥2 contributions “charge” such manoeuvres, aligning the aug-
mented objective with the intended target. Luckily, we realized of this bug and solved this
issue.

3.5 Training

Training flow-enhanced PT requires learning invertible transformations between adjacent
temperature distributions while maintaining numerical stability across diverse molecular
systems. We train one flow per adjacent temperature pair (βk,βk+1), yielding M−1 inde-
pendent models for M replicas. The training pipeline combines physics-informed likelihood
objectives with robust data processing strategies to handle variable molecular sizes, temporal
correlations, and energy outliers that arise in molecular simulations.

3.5.1 Optimization

For a given temperature pair, the empirical objective is the Monte Carlo estimate

L̂ACC(θ) =
1
m

m

∑
i=1

[
βlowU

(
T−1

θ
(x(i)high)

)
− log

∣∣detJT−1
θ

(x(i)high)
∣∣]

+
1
n

n

∑
j=1

[
βhighU

(
Tθ (x

(j)
low)

)
− log

∣∣detJTθ
(x(j)

low)
∣∣], (3.26)

with minibatches {x(i)high}
m
i=1 ∼ phigh and {x(j)

low}
n
j=1 ∼ plow. Training proceeds by optimizing

this objective using the Adam optimizer (Kingma and Ba, 2017), chosen for its adaptive

34 Methodology

learning rate properties. Adam algorithm maintains exponentially decaying averages of past
gradients and their squared values to compute per-parameter adaptive learning rates. Given
gt = ∇θL̂

(t)
ACC(θ)

∣∣
θ=θt

, the moment estimates update as

mt = ρ1mt−1 +(1−ρ1)gt

vt = ρ2vt−1 +(1−ρ2)g2
t

with bias-corrected forms m̂t = mt/(1−ρ t
1) and v̂t = vt/(1−ρ t

2). The parameter update rule
becomes:

θt+1 = θt −α
m̂t√
v̂t + ε

(3.27)

where α is the (base) learning rate, ρ1,ρ2 ∈ (0,1) are the EMA decay coefficients for the first
and second moment estimates, and ε > 0 is a small numerical stabilizer. Training stability is
ensured through gradient clipping and ReduceLROnPlateau scheduling monitoring validation
loss. Early stopping prevents overfitting.

Energy gating prevents gradient instability by filtering samples exceeding physically reason-
able energy thresholds during loss computation. Our implementation employs a two-stage
energy regularization scheme. First, energies are hard-clamped at Emax kJ/mol to prevent
numerical overflow:

Uclamped = min(U,Emax)

Second, a soft regularization applies logarithmic compression to energies exceeding Ecut

kJ/mol:

Ureg =

U if U ≤ Ecut

Ecut + log(1+U −Ecut) if U > Ecut

This regularization maintains gradient flow while preventing extreme energies from dominat-
ing the loss landscape. When all samples in a batch exceed the energy threshold, a sentinel
value is returned, effectively skipping the batch and avoiding gradient updates that could
destabilize training. The implementation employs peptide-specific target caching to avoid
repeated OpenMM system initialization, which otherwise triggers parser errors during multi-
peptide training. Our framework supports both single-peptide training and multi-peptide
training modes.

3.5.2 Data Pipeline

The training pipeline incorporates several preprocessing steps to enhance data quality and
model robustness. Subsampling reduces computational overhead by extracting every N-th

3.6 Summary 35

frame from PT trajectories, and it thins temporally correlated sequences so consecutive
training examples are more weakly related, yielding a higher effective sample size and more
stable gradient estimates. Coordinate centering removes translational degrees of freedom
by subtracting the molecular centroid: xcentered = x− 1

N ∑
N
i=1 xi, simplifying the learning

task. Chirality filtering preserves the L-amino acid configuration by detecting and removing
conformations with incorrect stereochemistry based on dihedral angle constraints, preventing
the model from learning unphysical molecular geometries.

Most critically, random rotation augmentation enhances rotational invariance by applying
consistent 3D rotations to coordinate pairs. For each training sample pair (xlow,xhigh), we
generate a random rotation matrix using Rodrigues’ formula. Given a random unit axis
v ∼ N (0,I)/|N (0,I)| and angle θ ∼ Uniform(0,2π), the rotation matrix is constructed as

R = I+ sinθ [v]×+(1− cosθ)[v]2×

where [v]× is the skew-symmetric matrix of v. The same rotation is applied to both con-
figurations: x′low = Rxlow and x′high = Rxhigh, preserving their geometric relationship while
exposing the model to diverse orientations.

Variable molecular sizes are handled through strategic padding and masking within the data
preprocessing pipeline. We extend smaller molecules to the maximum batch size Nmax by
inserting dummy atoms with negative type indices and zero coordinates. This creates a
padding mask M ∈ {0,1}B×Nmax where Mbi = 1 indicates a padded position. The transformer
architecture leverages this mask for attention computation: masked positions receive attention
logits of −∞, yielding zero attention weights after softmax normalization. The graph
architecture employs explicit exclusion by restricting neighborhood computations Ni to valid
atoms only, while maintaining correct batch indexing through edge offset calculations.

3.6 Summary

We introduced neural-enhanced PT that addresses vanishing overlap by learning bijective
transports Tθ between adjacent temperatures. The induced deterministic, involutive swap
satisfies detailed balance and can potentially improve naive coordinate exchanges (measur-
ing in terms of e.g. swap acceptance rates). We introduced three architectures spanning
bias–capacity trade-offs, and clarifying their symmetry properties. Finally, we linked learning
to practice by showing the bidirectional KL objective aligns with maximizing flow-enhanced
acceptance, and we outlined a training pipeline tailored to molecular data.

Chapter 4

Experiments and Results

When you can measure and express in numbers, you know something;
when you cannot, your knowledge is meagre and unsatisfactory.

— William Thomson (1824–1907)

Having established the methodology, this chapter delivers an empirical test of whether learned
transports can construct temperature overlap and translate it into faster molecular sampling.
We benchmark our three architectures (introduced in 3.2) on dipeptides across a four-replica
ladder. We open with an 18-mode GMM to visualise mode trapping and the dimensional
decay of vanilla PT, then move to molecular datasets. Performance is assessed mainly via
Swap Acceptance Rate (SAR), although we also provide further analysis on more topics.

4.1 Preliminaries

Before assessing flow-based acceleration on molecular systems, we first illustrate the lim-
itations of MCMC samplers on a controlled benchmark: an 18-mode Gaussian mixture
model (GMM) arranged on a 2D lattice with energy barriers between modes. We run over-
damped Langevin dynamics with step size 0.01 for 10,000 iterations from a single mode,
and compare against parallel tempering with two replicas at temperatures T ∈ {1.0, 20.0},
attempting swaps every 10 steps. Figure 4.1 summarizes the qualitative behavior: Langevin
becomes trapped in a single mode, whereas vanilla PT can traverse between modes in this
low-dimensional setting.

4.1 Preliminaries 37

(a) Langevin sampling (mode trapping). (b) PT with vanilla swaps.

Fig. 4.1 Sampling on an 18-mode GMM. (a) Langevin remains confined to one mode. (b)
PT with coordinate swaps explores multiple modes in 2D.

However, the same vanilla PT mechanism deteriorates rapidly with dimension. In Figure 4.2
we report the mean swap-acceptance rate (accepted swaps divided by attempted swaps) as a
function of the GMM dimension for several fixed temperature gaps. Acceptance remains
reasonable in 2D but decays sharply as the dimension increases, dropping below 1% for
moderate dimension. This mirrors the situation in molecular systems, where hundreds of
degrees of freedom induce exceedingly sparse overlap between adjacent temperatures.

Fig. 4.2 SAR of vanilla PT versus GMM dimension for three temperature gaps.

38 Experiments and Results

These controlled experiments motivate our approach: while standard MCMC suffers mode
trapping and vanilla PT alleviates this only in low dimensions, PT becomes inefficient as
dimensionality grows because adjacent-temperature overlaps vanish. The goal of our learned
transports is precisely to construct higher overlap, via energy so as to restore higher swap
acceptance rates (SAR) in complex, high-dimensional molecular targets.

4.2 Dataset Generation

Our molecular datasets originate from PT simulations of nine dipeptide systems using the
AMBER14 all-atom force field with implicit OBC2 solvent. The training set contains
[AA, SS, KK, AS, AK, SK] peptides and test set [SA, KA, KS]. Each peptide begins
from minimized PDB conformations obtained from the Timewarp 2AA-1-big repository
(Klein, Foong, et al., 2023). After energy minimization to remove steric clashes, coordinates
are perturbed by Gaussian noise (σ = 0.01 nm) to differentiate replicas. The geometric
temperature ladder spans T1 = 300 K to T5 = 1000 K with scaling factor r ≈ 1.495, yielding
temperatures [300.0,450.0,670.0,1000.0]K designed for < 20% naïve swap acceptance rate
(SAR) (Table 4.1), leaving substantial room for improvement, yet avoiding the zero-SAR
regime that would imply generating datasets via MALA.

The PT protocol employs Langevin dynamics with 10−4 nm step size, Metropolis-Hastings
swap exchanges every 100 steps, and 5× 106 total steps across 10 independent chains
per temperature replica. From the resulting dataset, we later subsampled, retaining every
subsamplerate–th sample, to reduce statistical correlation and improve computational ef-
ficiency. Energy evaluations are truncated at 108 kJ/mol with hard caps at 1020 kJ/mol to
prevent numerical instabilities during training (as detailed in Section 3.5).

The preprocessing pipeline includes coordinate centering

r′i = ri −
1

Na

Na

∑
j=1

r j,

chirality filtering using φ–ψ dihedral angle criteria, and data augmentation via random
rotations and translations. Trajectories are stored as tensors with shape [NT ,Nc,Ns,3Na],
where NT is the number of temperature levels, Nc is the number of chains, Ns is the number
of steps and 3Na is the dimensionality of the molecule. We save PT trajectory alongside
atom_types.pt and adj_list.pt (built via Equation (3.12)) files providing structural
information for graph-aware architectures.

https://huggingface.co/datasets/microsoft/timewarp/tree/main

4.3 Swap Acceptance Rate (SAR) 39

4.3 Swap Acceptance Rate (SAR)

We quantify swap efficiency for each adjacent temperature pair (βk,βk+1) by the Swap Accep-
tance Rate (SAR), defined as the expected Metropolis acceptance under the corresponding
target(s). For the baseline (naive coordinate exchange), we use the acceptance αnaive(x,y)
in (3.3). For the simple and graph flows (positions only), we use αflow(x,y) in (3.6) with
exponent ∆flow(x,y) from (3.7). For the transformer (augmented states), we evaluate

αaug(x,y,vx,vy) = min{1,exp(∆aug(x,y,vx,vy))},

with ∆aug given in (3.24). In practice, given n pairs {(xi,yi)}n
i=1 from Pβk

⊗Pβk+1
, we estimate

these with simple sample means. For positions-only methods (baseline, simple, graph),

ŜARbaseline/flow =
1
n

n

∑
i=1

αnaive/flow(xi,yi). (4.1)

For the transformer,

ŜARtransformer =
1
n

n

∑
i=1

αaug
(
xi,yi,vx,i,vy,i

)
, vx,i,vy,i ∼ N (0, I),

For statistical rigor, we generally produce T independent repeats (distinct seeds/splits), then
we report the mean m̄ = 1

T ∑
T
t=1 mt (mt a per-repeat estimate) and a 95% Student t interval

m̄± t0.975,T−1 sm/
√

T , where s2
m = 1

T−1 ∑
T
t=1(mt − m̄)2.

We first summarize baseline PT to establish difficulty across systems and temperature gaps.
Table 4.1 shows uniformly modest acceptance, with a clear and expected size trend: larger
peptides (e.g., 47-atom KK) accept less often than smaller ones (e.g., 23-atom AA/24-atom
AS). We then turn to flow-enhanced PT on the adjacent pair (k,k+1) = (0,1) (300–450 K),
evaluating SAR with the acceptance functions above. Before discussing the numbers, we
flag a key limitation: a late-stage HPC outage prevented the planned retraining from scratch.
The results below were produced on very small datasets (via strongly subsampling) and
short local CPU-only runs, so several models are undertrained. In this regime, simple
(coordinate-only) flows appear particularly strong largely because they converge faster on
single-peptide, vectorized domains; by contrast, multi-peptide settings enlarge the function
class and slow optimization, and data-hungry transformers benefit less without scale. Graph
flows outperform transformers here, which we attribute to their symmetry-aware inductive
bias being more sample-efficient; transformers tend to realize their advantage only with
larger datasets and longer training.

40 Experiments and Results

Table 4.1 Baseline Swap Acceptance Rates (%).

Peptide Num Atoms 300–450K 450–670K 670–1000K

Training Systems
AA 23 12.2±0.2 19.4±0.5 17.5±0.4
AS 24 19.0±0.3 15.7±0.4 10.9±0.2
AK 35 3.6±0.2 9.2±0.3 6.2±0.2
SS 25 9.9±0.2 9.9±0.3 11.5±0.2
KK 47 1.7±0.2 3.9±0.1 1.3±0.1
SK 36 1.5±0.1 8.9±0.4 5.3±0.2

Test Systems
SA 24 13.3±0.2 10.0±0.4 10.4±0.3
KA 35 6.0±0.3 6.9±0.2 8.6±0.3
KS 36 3.3±0.1 3.8±0.2 6.4±0.3

Table 4.2 SAR (%) by architecture for pair (300–450 K). Estimation follows (4.1)–(4.3).

System Baseline PT Simple Flow Graph Flow Transformer Flow

Training Systems
AA 12.2±0.2 82.2±0.9 21.9±0.4 16.3±0.3
AS 19.0±0.3 89.8±1.2 26.0±0.5 21.3±0.6
AK 3.6±0.2 89.3±1.3 5.5±0.3 4.7±0.3
SS 9.9±0.2 89.3±0.5 10.7±0.3 14.0±0.3
KK 1.7±0.2 89.2±0.9 2.7±0.2 3.1±0.2
SK 1.5±0.1 90.6±1.0 2.9±0.1 3.1±0.1

Test Systems
SA 13.3±0.2 89.5±0.7 16.3±0.3 14.6±0.3
KA 6.0±0.3 89.2±1.6 10.2±0.3 7.4±0.2
KS 3.3±0.1 90.1±1.2 7.3±0.2 5.2±0.1

Training Avg 8.0 11.6 10.4
Test Avg 7.5 11.3 8.5

4.4 Symmetry 41

Table 4.2 shows consistent improvements over baseline across learned transports. We
highlight a promising indication of transferability. Recall that the Simple Flow model is
trained separately on each peptide dataset, yielding nine distinct models (one per peptide). In
contrast, the Graph Flow and Transformer models are trained once on the training systems
and then evaluated directly on the test systems (peptides they have never encountered
during training). The SAR results for these models therefore reflect genuine zero-shot
transfer. Notably, this marks the first encouraging spark toward achieving our original goal:
demonstrating transferability to unseen peptides. We further observe that the train–test
performance gap is smaller for the graph-based architecture, which we attribute to its built-in
symmetries that promote better generalization in low-data settings.

Across all methods, SAR declines with system size: even when transports improve overlap.
Overall, these results should be read as preliminary and shaped by compute constraints; they
nevertheless indicate that learned transports can elevate swap efficiency relative to baseline
PT, while having exact sampling from our target.

4.4 Symmetry

Next, we examine whether the learned proposal Tθ : RN×3 →RN×3 respects two basic
symmetries on AA (N = 23) for the (k,k+1) = (0,1) pair. As discussed in Section 4.3, the
transformer was trained under tight budgets and without an explicit geometric bias, so its
performance here reflects data- and scale-limited learning rather than a hard architectural
limit. In contrast, the graph model encodes symmetry-aware operations by construction (see
Section 3.2), and therefore provides a stronger reference on these metrics, as expected.

To probe E(3) behavior, we sample i.i.d. rigid motions (R, t) where R∈SO(3) (random
axis–angle, uniform on the sphere) and t∈R3 (uniform in a bounded cube), and for a batch
{xb}B

b=1 measure the average per-atom discrepancy between “transform then map” and “map
then transform”:

εE(3) =
1

BN

B

∑
b=1

N

∑
i=1

∥∥Tθ (Rxb + t)i − (RTθ (xb)+ t)i
∥∥

2, (4.2)

so a perfectly E(3)-equivariant Tθ yields εE(3) = 0. We aggregate (4.2) over many random
(R, t) to obtain an empirical error distribution (Fig. 4.3). To assess permutation behavior,
we construct random within-type atom permutations P (atoms permuted only inside their

42 Experiments and Results

element class) and compute

εperm =
1

BN

B

∑
b=1

N

∑
i=1

∥∥Tθ (Pxb)i −
(
PTθ (xb)

)
i

∥∥
2, (4.3)

again targeting zero in the ideal case; the resulting distribution appears in Fig. 4.4.

Fig. 4.3 Distribution of εE(3) (Å) over random rigid motions.

Fig. 4.4 Distribution of εperm (Å) over random within-type permutations.

4.5 Attention and Adjacency 43

Taken together, the measurements align with the architectural biases. The graph flow attains
near-zero medians on both metrics, consistent with its use of invariant scalars for scales
and relative vectors for shifts, and with the centroid reparameterization that restores exact
translation behavior discussed earlier. The simple coordinate-only flow, trained with rotation
augmentation in low-data regime, partially preserves rigid motions but lacks a mechanism for
atom relabeling, leading to noticeably larger εperm. The transformer shows near-permutation
invariance (shared per-atom processing and masking help) yet a higher εE(3) than the graph
flow, which is expected in the absence of built-in E(3) structure under limited training.

Because the transformer’s symmetry arises purely from data augmentation, we anticipate
substantial gains with longer training runs and larger datasets. Under stronger E(3) augmen-
tation applied consistently to (x,y) pairs, the transformer should close most of the E(3) gap
to the graph model while retaining its ability to capture long-range couplings at scale.

4.5 Attention and Adjacency

Next, we probe how PTSwapTransformerFlow routes information on AA (N=23) by ex-
tracting attention matrices across heads/layers and averaging over 320 configurations to
obtain A(i, j). Because raw attention is low-variance, we Z-score normalize to highlight
relative structure. As “ground-truth” connectivity we use the covalent adjacency (with 22
bonds under the used neighborhood cut-off). We recall the graph model’s neighborhoods are
built as a radius graph with cutoff τ = 0.5nm (5 Å) when constructing edges (see 3.2).

The learned attention closely mirrors the ground–truth chemical bonds. As seen in Fig. 4.5,
the transformer recovers the block–diagonal structure of bonded atom pairs with remarkable
fidelity, with the strongest attention weights concentrated along existing bonds. Quantitatively,
the Spearman correlation between attention scores and bond presence is high (ρ=0.812),
and the Jensen–Shannon divergence between their distributions is low (0.215), indicating
strong alignment. The top-1 attended neighbor for each atom is always a bonded partner
(100% recovery across all 23 atoms), and over 85% of total attention mass is assigned to
bonded pairs. This shows the attention model organizes its attention to reflect the underlying
molecular graph (with built-in topology in the graph-based model), providing intuition for
how inductive biases toward graph structure can be advantageous.

44 Experiments and Results

Fig. 4.5 AA bonds (left) vs. normalized transformer attention (right).

Fig. 4.6 3D bonds (left) vs. “attention skeleton” from top-1 neighbors (right).

4.6 Energy Validation

We also validate PTSwapFlow (as it was the best-trained) Tθ on AA by checking whether
it maps configurations from a lower to a higher temperature while preserving the energy
distribution. For each adjacent pair in the ladder (300 K up to 1000 K), we draw M=2000
configurations from the lower replica x(i)low and from the higher replica y(i)high, compute mapped

states x(i)mapped = Tθ

(
x(i)low

)
, and compare potential energies under the common U(·). As a

4.7 Ramachandran Coverage 45

paired summary error we report the mean absolute error

MAE =
1
M

M

∑
i=1

∣∣∣U(
x(i)mapped

)
− U

(
y(i)high

)∣∣∣, (4.4)

and visualize overlap using Gaussian–KDE curves for native low-temperature (blue), low-to-
high mapped (red) and native high-temperature (green) energies.

(a) 300 K → 450 K, MAE =
34.1 kJ/mol

(b) 450 K → 670 K, MAE =
55.2 kJ/mol

(c) 670 K → 1000 K, MAE =
64.7 kJ/mol

Fig. 4.7 Energy distributions for AA under the simple-flow model across the three adjacent
temperature pairs (300→450 K, 450→670 K, and 670→1000 K). Densities are estimated
via Gaussian KDE. The x-axis denotes energy (kJmol−1) and the y-axis denotes density.

Across these pairs, conservation quality degrades as the temperature gap widens. The
300→450 K transition shows better overlap (MAE ≈ 34 kJ/mol); the next two remain in
a good–moderate regime (MAE ≈ 55–65 kJ/mol) with small but noticeable shifts. Thus,
for AA, the simple flow preserves energy distributions well for small to moderate gaps,
supporting its use for accelerating swaps on the cooler end of the ladder. Figure 4.7 illustrates
the idea of constructing overlap, leveraging the fact that the probability distribution is directly
tied to the energy function.

4.7 Ramachandran Coverage

Finally, we conclude with an end–to–end sampling test on AA using Ramachandran (φ ,ψ)

statistics (Ramachandran et al., 1963). As a ground truth reference we use the Timewarp
2AA-1-complete MD dataset, which provides all-atom trajectories for 400 dipeptides (clas-
sical MD with an implicit solvent; frames saved every 10,000 steps). We compare (i) vanilla
PT on a four-replica ladder T ∈ {300,450,670,1000}K with naïve coordinate swaps (Sec-
tion 4.3), and (ii) flow–PT using the simple architecture. For flow–PT we train one map
per adjacent pair, {T0→1, T1→2, T2→3}, and at each exchange attempt between replicas k and
k+1 we apply the corresponding map and test with the Metropolis rule in (3.6). Since HPC

46 Experiments and Results

downtime forced CPU-only training; compute-heavy graph/transformer transports underfit,
yielding only 2–10% SAR gains as shown in (Sec. 4.3) and Ramachandran coverage is
comparable to vanilla PT. We therefore omit their plots and focus on the simple flow, which
trained more reliably under the same constraints, with 70–90% SAR gains.

(a) MD ground truth. (b) Vanilla PT. (c) Flow–PT.

Fig. 4.8 Ramachandran plots for AA at the 300 K replica after running PT in a
four–temperature (geom schedule) ladder (300–1000 K).

Figure 4.8 summarizes the qualitative picture. Vanilla PT remains confined to the high-density
basins and struggles to reach smaller, low-density modes, suggesting limited guidance from
higher-temperature replicas to explore those regions. Flow-based PT remedies this limitation,
broadening coverage and placing samples in modes that vanilla PT does not visit. This
indicates that the learned transports are effectively constructing temperature overlap and
converting it into successful exchanges, thereby enabling more thorough exploration of the
target distribution.

4.8 Summary

We show empirically that learned transports can construct temperature overlap and lift swap
acceptance beyond baseline PT, which shows the expected size dependence (larger systems
⇒ lower SAR) formulated in the temperature overlap problem formulated in previous
chapter. Under tight budgets, simple flows look strongest (fast convergence on single-peptide
domains), while graph flows provide a robust compromise; solid SAR with near-ideal
symmetry. The transformer already learns useful long-range couplings (attention–adjacency)
but needs more training to reduce E(3) error and close the gap. Energy checks on AA show
the simple flow preserves high-temperature energy distributions for moderate gaps. These
results are preliminary; the path forward is to scale training (GPUs, longer runs).

Chapter 5

Conclusion

The purpose of computing is insight, not numbers.
— Richard Hamming (1915–1998)

This thesis advances a simple but powerful idea: instead of hoping adjacent temperatures
accidentally overlap, we can engineer that overlap with exact, learned transports, and we
can do so in a way that transfers across molecules and temperature ladders. Starting from
statistical–mechanical first principles (Boltzmann equilibrium) through the limits of local
MCMC and the ensemble logic of PT, we identified a true bottleneck: in high dimensions,
neighboring tempered distributions rarely meet. Our solution was to learn diffeomorphic,
symmetry-aware maps that actively warp probability geometry so that replica exchanges
become more common while detailed balance is preserved via an involutive swap. Crucially,
we framed this as more than acceleration: physically similar systems share structure, and
samplers should exploit that to propose in a principled way wherever they are placed on a
ladder. Normalizing flows give the reversible mechanism; graph and transformer variants
supply inductive bias and global coupling; and the bidirectional NLL directly aligns learning
with the Metropolis exponent. On dipeptides, this translated into higher swap acceptance and
broader configurational coverage at the physical replica.

5.1 Limitations

A central architectural limitation is that we currently train one model per adjacent pair: an
N-replica ladder requires N−1 distinct flows. Ideally, temperature would be part of the input
so a single conditional transport Tθ (x | βin,βout) serves the entire ladder; our present methods
do not yet support this.

48 Conclusion

Empirically, our strongest results focus on swap acceptance rate (SAR) under constrained
training. We did not conduct extensive ablations, nor did we pursue joint ladder co-
optimization once SAR gains failed to materialize robustly in the potentially transferable
models (graph and transformers). Evaluation breadth is therefore limited: beyond SAR we
did not focus on other end-to-end measures (e.g., ESS per wall-clock, round-trip times), and
we should do so in future work.

Although compute constraints did play a role in (harming) the outcome of this work, transfer-
able models were trained on local CPUs for > 24 h; and so optimization bottlenecks might
also have to do coupling-based flows, and not only with scale (e.g. training with more data
and compute). We have not yet tested higher-capacity alternatives such as autoregressive
flows, and residual/continuous-time layers variants outlined in §2.3.2, and we should do so
in future work.

5.2 Future Work

Scale is the most direct next step: retrain with GPUs, longer schedules, and larger datasets to
realize transformer capacity and stress-test transferability (which we expect to improve to
some degree). In parallel, embed temperature directly into the transport to collapse N −1
models into a single conditional map, and consider co-optimizing the ladder jointly with the
learned proposal.

Architecturally, explore E(3)/SE(3)-equivariant variants, autoregressive normalizing flows,
and residual/continuous-time layers, as well as diffusion or flow-matching objectives as
alternatives to pure likelihood training. Light acceptance-aware or equivariance regularizers
that target inference-time quantities are natural complements.

Evaluation should broaden beyond SAR: report ESS per unit time/energy, replica round-
trip rates, backbone and side-chain statistics, free-energy landscapes, and compare against
stronger PT baselines so improvements reflect true end-to-end efficiency. In this work, we
did not emphasize stronger benchmarking here because only the non-transferable “Simple
Flow” reached considerable outperformance and so we spent more time on improving the
models under the compute constrains. This work then effectively replicates (Zhang et al.,
2025b) work, which is still valuable to the field, but the next iteration should prioritize
ladder-agnostic and peptide transfer with rigorous efficiency accounting.

References

Akhound-Sadegh, Tara et al. (2025). Progressive Inference-Time Annealing of Diffusion
Models for Sampling from Boltzmann Densities. arXiv: 2506 .16471 [cs.LG]. URL:
https://arxiv.org/abs/2506.16471.

Aldous, David and James Allen Fill (2002). Reversible Markov Chains and Random Walks
on Graphs. Unfinished monograph; recompiled PDF (2014). URL: https://www.stat.
berkeley.edu/~aldous/RWG/book.html.

Banach, Stefan (1922). “Sur les opérations dans les ensembles abstraits et leur application aux
équations intégrales”. In: Fundamenta Mathematicae 3, pp. 133–181. DOI: 10.4064/fm-
3-1-133-181.

Behrmann, Jens et al. (2019). Invertible Residual Networks. arXiv: 1811.00995 [cs.LG].
URL: https://arxiv.org/abs/1811.00995.

Bellman, Richard E. (1957). Dynamic Programming. Princeton, NJ: Princeton University
Press.

Boltzmann, Ludwig (1868). “Studien über das Gleichgewicht der lebendigen Kraft zwischen
bewegten materiellen Punkten”. German. In: Sitzungsberichte der k. k. Akademie der
Wissenschaften (Wien), II. Klasse 58, pp. 517–560.

Chen, Ricky T. Q. et al. (2019). Neural Ordinary Differential Equations. arXiv: 1806.07366
[cs.LG]. URL: https://arxiv.org/abs/1806.07366.

Dinh, Laurent, Jascha Sohl-Dickstein, and Samy Bengio (2017). “Density Estimation using
Real NVP”. In: International Conference on Learning Representations. arXiv: 1605.
08803.

Douc, Randal and Sylvain Le Cor (2015). Markov Chain Monte Carlo – Theory and Practical
Applications: A Crash Course in Monte-Carlo Methods by Markov Chains. https://wiki.
randaldouc.xyz/ lib /exe/ fetch .php?media=world :poly.pdf. Graduate lecture notes,
Télécom SudParis.

Draxler, Felix, Peter Sorrenson, et al. (2023). “Free-Form Flows: Make Any Architecture a
Normalizing Flow”. In: DOI: 10.48550/arXiv.2310.16624. arXiv: 2310.16624 [cs.LG].

https://arxiv.org/abs/2506.16471
https://arxiv.org/abs/2506.16471
https://www.stat.berkeley.edu/~aldous/RWG/book.html
https://www.stat.berkeley.edu/~aldous/RWG/book.html
https://doi.org/10.4064/fm-3-1-133-181
https://doi.org/10.4064/fm-3-1-133-181
https://arxiv.org/abs/1811.00995
https://arxiv.org/abs/1811.00995
https://arxiv.org/abs/1806.07366
https://arxiv.org/abs/1806.07366
https://arxiv.org/abs/1806.07366
https://arxiv.org/abs/1605.08803
https://arxiv.org/abs/1605.08803
https://wiki.randaldouc.xyz/lib/exe/fetch.php?media=world:poly.pdf
https://wiki.randaldouc.xyz/lib/exe/fetch.php?media=world:poly.pdf
https://doi.org/10.48550/arXiv.2310.16624
https://arxiv.org/abs/2310.16624

50 References

Draxler, Felix, Stefan Wahl, et al. (2024). “On the Universality of Volume-Preserving and
Coupling-Based Normalizing Flows”. In: DOI: 10.48550/arXiv.2402.06578. arXiv:
2402.06578 [cs.LG].

Flouris, Kyriakos and Ender Konukoglu (2023). “Canonical Normalizing Flows for Manifold
Learning”. In: DOI: 10.48550/arXiv.2310.12743. arXiv: 2310.12743 [stat.ML].

Grathwohl, Will et al. (2018). FFJORD: Free-form Continuous Dynamics for Scalable
Reversible Generative Models. arXiv: 1810.01367 [cs.LG]. URL: https://arxiv.org/abs/
1810.01367.

Hamilton, William Rowan (1834). “On a General Method in Dynamics”. In: Philosophical
Transactions of the Royal Society of London 124, pp. 247–308. DOI: 10.1098/rstl.1834.
0017.

He, Jiajun et al. (2025). “No Trick, No Treat: Pursuits and Challenges Towards Simulation-
Free Training of Neural Samplers”. In: DOI: 10 . 48550 / arXiv. 2502 . 06685. arXiv:
2502.06685 [cs.LG].

Ho, Jonathan, Ajay Jain, and Pieter Abbeel (2020). Denoising Diffusion Probabilistic Models.
arXiv: 2006.11239 [cs.LG]. URL: https://arxiv.org/abs/2006.11239.

Kingma, Diederik P. and Jimmy Ba (2017). Adam: A Method for Stochastic Optimization.
arXiv: 1412.6980 [cs.LG]. URL: https://arxiv.org/abs/1412.6980.

Kingma, Diederik P. and Prafulla Dhariwal (2018). “Glow: Generative Flow with Invertible
1×1 Convolutions”. In: Advances in Neural Information Processing Systems. arXiv:
1807.03039.

Kingma, Diederik P., Tim Salimans, et al. (2017). Improving Variational Inference with
Inverse Autoregressive Flow. arXiv: 1606.04934 [cs.LG]. URL: https://arxiv.org/abs/
1606.04934.

Klein, Leon, Andrew Y. K. Foong, et al. (2023). “Timewarp: Transferable Acceleration of
Molecular Dynamics by Learning Time-Coarsened Dynamics”. In: DOI: 10.48550/arXiv.
2302.01170. arXiv: 2302.01170 [stat.ML].

Klein, Leon, Andreas Krämer, and Frank Noé (2023). “Equivariant Flow Matching”. In: DOI:
10.48550/arXiv.2306.15030. arXiv: 2306.15030 [stat.ML].

Klein, Leon and Frank Noé (2024). “Transferable Boltzmann Generators”. In: DOI: 10.48550/
arXiv.2406.14426. arXiv: 2406.14426 [stat.ML].

Kramers, H. A. (1940). “Brownian Motion in a Field of Force and the Diffusion Model of
Chemical Reactions”. In: Physica 7.4, pp. 284–304. DOI: 10.1016/S0031-8914(40)90098-
2.

https://doi.org/10.48550/arXiv.2402.06578
https://arxiv.org/abs/2402.06578
https://doi.org/10.48550/arXiv.2310.12743
https://arxiv.org/abs/2310.12743
https://arxiv.org/abs/1810.01367
https://arxiv.org/abs/1810.01367
https://arxiv.org/abs/1810.01367
https://doi.org/10.1098/rstl.1834.0017
https://doi.org/10.1098/rstl.1834.0017
https://doi.org/10.48550/arXiv.2502.06685
https://arxiv.org/abs/2502.06685
https://arxiv.org/abs/2006.11239
https://arxiv.org/abs/2006.11239
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1807.03039
https://arxiv.org/abs/1606.04934
https://arxiv.org/abs/1606.04934
https://arxiv.org/abs/1606.04934
https://doi.org/10.48550/arXiv.2302.01170
https://doi.org/10.48550/arXiv.2302.01170
https://arxiv.org/abs/2302.01170
https://doi.org/10.48550/arXiv.2306.15030
https://arxiv.org/abs/2306.15030
https://doi.org/10.48550/arXiv.2406.14426
https://doi.org/10.48550/arXiv.2406.14426
https://arxiv.org/abs/2406.14426
https://doi.org/10.1016/S0031-8914(40)90098-2
https://doi.org/10.1016/S0031-8914(40)90098-2

References 51

Kullback, S. and R. A. Leibler (1951). “On Information and Sufficiency”. In: The Annals
of Mathematical Statistics 22.1, pp. 79–86. DOI: 10 .1214/aoms/1177729694. URL:
https://doi.org/10.1214/aoms/1177729694.

Langevin, Paul (1908). “On the Theory of Brownian Motion”. In: Comptes Rendus 146,
pp. 530–533.

Lee, Sangyun, Zinan Lin, and Giulia Fanti (2024). “Improving the Training of Rectified
Flows”. In: DOI: 10.48550/arXiv.2405.20320. arXiv: 2405.20320 [cs.LG].

Lipman, Yaron et al. (2023). Flow Matching for Generative Modeling. arXiv: 2210.02747
[cs.LG]. URL: https://arxiv.org/abs/2210.02747.

Papamakarios, George, Theo Pavlakou, and Iain Murray (2018). Masked Autoregressive Flow
for Density Estimation. arXiv: 1705.07057 [stat.ML]. URL: https://arxiv.org/abs/1705.
07057.

Predescu, Cristian, Mihaela Predescu, and Cristian V. Ciobanu (2004). “The incomplete beta
function law for parallel tempering sampling of classical canonical systems”. In: The
Journal of Chemical Physics 120.9, pp. 4119–4128. DOI: 10.1063/1.1644093.

Rahimi, Ali and Benjamin Recht (2007). “Random Features for Large-Scale Kernel Ma-
chines”. In: Advances in Neural Information Processing Systems. Ed. by J. Platt et al.
Vol. 20. Curran Associates, Inc. URL: https://proceedings.neurips.cc/paper_files/paper/
2007/file/013a006f03dbc5392effeb8f18fda755-Paper.pdf.

Ramachandran, G. N., C. Ramakrishnan, and V. Sasisekharan (1963). “Stereochemistry of
Polypeptide Chain Configurations”. In: Journal of Molecular Biology 7, pp. 95–99. DOI:
10.1016/S0022-2836(63)80023-6.

Risken, Hannes (1996). The Fokker–Planck Equation: Methods of Solution and Applications.
Springer.

Rissanen, Severi et al. (2025). Progressive Tempering Sampler with Diffusion. arXiv: 2506.
05231 [cs.LG]. URL: https://arxiv.org/abs/2506.05231.

Schreiner, Mathias, Ole Winther, and Simon Olsson (2023). “Implicit Transfer Operator
Learning: Multiple Time-Resolution Models for Molecular Dynamics”. In: Advances in
Neural Information Processing Systems 37. OpenReview ID: 1kZx7JiuA2. URL: https:
//openreview.net/forum?id=1kZx7JiuA2.

Tan, Charlie B., Avishek Joey Bose, et al. (2025). “Scalable Equilibrium Sampling with
Sequential Boltzmann Generators”. In: DOI: 10.48550/arXiv.2502.18462. arXiv: 2502.
18462 [stat.ML].

Tan, Charlie B., Majdi Hassan, et al. (2025). “Amortized Sampling with Transferable Normal-
izing Flows”. In: ICML 2025 Workshop on Generative Models for Biology. OpenReview
ID: 1nNvu3hJqP. URL: https://openreview.net/forum?id=1nNvu3hJqP.

https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.48550/arXiv.2405.20320
https://arxiv.org/abs/2405.20320
https://arxiv.org/abs/2210.02747
https://arxiv.org/abs/2210.02747
https://arxiv.org/abs/2210.02747
https://arxiv.org/abs/1705.07057
https://arxiv.org/abs/1705.07057
https://arxiv.org/abs/1705.07057
https://doi.org/10.1063/1.1644093
https://proceedings.neurips.cc/paper_files/paper/2007/file/013a006f03dbc5392effeb8f18fda755-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2007/file/013a006f03dbc5392effeb8f18fda755-Paper.pdf
https://doi.org/10.1016/S0022-2836(63)80023-6
https://arxiv.org/abs/2506.05231
https://arxiv.org/abs/2506.05231
https://arxiv.org/abs/2506.05231
https://openreview.net/forum?id=1kZx7JiuA2
https://openreview.net/forum?id=1kZx7JiuA2
https://doi.org/10.48550/arXiv.2502.18462
https://arxiv.org/abs/2502.18462
https://arxiv.org/abs/2502.18462
https://openreview.net/forum?id=1nNvu3hJqP

52 References

Vaswani, Ashish et al. (2023). Attention Is All You Need. arXiv: 1706.03762 [cs.CL]. URL:
https://arxiv.org/abs/1706.03762.

Yu, Ziyang, Wenbing Huang, and Yang Liu (2024). “Force-Guided Bridge Matching for
Full-Atom Time-Coarsened Dynamics of Peptides”. In: DOI: 10.48550/arXiv.2408.15126.
arXiv: 2408.15126 [physics.chem-ph].

Zhai, Shuangfei et al. (2024). “Normalizing Flows are Capable Generative Models”. In: DOI:
10.48550/arXiv.2412.06329. arXiv: 2412.06329 [cs.LG].

Zhang, Leo et al. (2025a). “Accelerated Parallel Tempering via Neural Transports”. In: DOI:
10.48550/arXiv.2502.10328. arXiv: 2502.10328 [stat.ML].

— (May 2025b). “Accelerated Parallel Tempering via Neural Transports”. In: arXiv preprint
arXiv:2502.10328v2. Under review.

https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://doi.org/10.48550/arXiv.2408.15126
https://arxiv.org/abs/2408.15126
https://doi.org/10.48550/arXiv.2412.06329
https://arxiv.org/abs/2412.06329
https://doi.org/10.48550/arXiv.2502.10328
https://arxiv.org/abs/2502.10328

Appendix A

Proofs & Supplementary Mathematics

A.1 MH kernel satisfies detailed balance

This appendix verifies that the Metropolis–Hastings (MH) transition kernel from Equa-
tion (2.9) satisfies detailed balance with respect to any target density π .

Proof. Consider off-diagonal pairs xxx ̸ ̸ ̸=== yyy, since the argument for diagonal pairs yyy === xxx is
trivial. We prove the pairwise flux symmetry

π(x)q(y | x)α(x,y) = π(y)q(x | y)α(y,x).

Consider two cases for r(x,y).

Case 1: r(x,y)≥ 1. Then α(x,y) = 1 and α(y,x) = min{1,1/r(x,y)}= 1/r(x,y). Hence

π(x)q(y | x)α(x,y) = π(x)q(y | x)

=
π(y)q(x | y)

r(x,y)
= π(y)q(x | y)α(y,x).

Case 2: r(x,y)≤ 1. Then α(x,y) = r(x,y) and α(y,x) = 1. Hence

π(x)q(y | x)α(x,y) = π(x)q(y | x)r(x,y)

= π(y)q(x | y) = π(y)q(x | y)α(y,x).

Thus π(x)K(x,y) = π(y)K(y,x) for all x ̸= y, i.e., detailed balance holds.

54 Proofs & Supplementary Mathematics

A.2 2D Affine Coupling Layer Example

This appendix provides a concrete 2D example demonstrating the mechanics of affine
coupling layers, including forward transformations, inverse computations, and Jacobian
determinant calculations.

Consider a 2D input vector x(0) = (x1,x2) processed through two sequential affine coupling
layers with alternating masks:

m(1) = (1,0)
m(2) = (0,1)

 x(0) = (x1,x2)
x(0)⊙m(1)
−−−−−→ (x1,0)

x(1) = (y1,y2)
x(1)⊙m(2)
−−−−−→ (0,y2)

The transformation proceeds through two coupling layers as detailed in Table A.1.

Table A.1 Forward coupling layer transformations for 2D example.

Layer Mask m Forward transformation log |detJ|
1 (1,0) y1 = x1, y2 = x2es(1)(x1)+ t(1)(x1) s(1)(x1)

2 (0,1) z2 = y2, z1 = y1es(2)(y2)+ t(2)(y2) s(2)(y2)

The full Jacobian matrices for each layer are given by

J(1) =
∂ (y1,y2)

∂ (x1,x2)
=

 1 0

∂

∂x1

[
x2es(1)(x1)+ t(1)(x1)

]
es(1)(x1)



J(2) =
∂ (z1,z2)

∂ (y1,y2)
=

es(2)(y2) y1es(2)(y2)s(2)′(y2)+ t(2)′(y2)

0 1


The composite forward map f (x) = z has log-determinant

log |detJ f (x)|= s(1)(x1)+ s(2)(y2)

where y2 = x2es(1)(x1)+ t(1)(x1). The inverse transformation proceeds by reversing the layer
order and applying inverse operations, as shown in Table A.2.

A.2 2D Affine Coupling Layer Example 55

Table A.2 Inverse coupling layer transformations for 2D example.

Layer Mask m Inverse transformation log |detJ|
2−1 (0,1) y2 = z2, y1 =

(
z1 − t(2)(z2)

)
e−s(2)(z2) −s(2)(z2)

1−1 (1,0) x1 = y1, x2 =
(

y2 − t(1)(y1)
)

e−s(1)(y1) −s(1)(y1)

The composite inverse map f−1(z) = x has log-determinant:

log |detJ f−1(z)|=−s(2)(z2)− s(1)(y1)

where y1 =
(

z1 − t(2)(z2)
)

e−s(2)(z2). This example demonstrates that coupling layers achieve
exact invertibility and tractable Jacobians through alternating masks. The log-determinant
sums across layers: log |detJ f |= ∑i log |detJ(i)|, enabling computationally efficient normal-
izing flows.

56 Proofs & Supplementary Mathematics

A.3 MH acceptance rate with deterministic proposal

This appendix derives the MH acceptance criterion for deterministic proposals (3.5).

Proof. Let π(x,y) be the target density on Ω×Ω with respect to Lebesgue measure λ ⊗λ .
Consider a deterministic proposal induced by a measurable map g : Ω×Ω → Ω×Ω,

q
(
(x,y),d(x′,y′)

)
= δg(x,y)

(
d(x′,y′)

)
,

which is singular w.r.t. λ ⊗λ . The Metropolis–Hastings transition kernel is

K
(
(x,y),d(x′,y′)

)
= α(x,y)δg(x,y)

(
d(x′,y′)

)
+

(
1−α(x,y)

)
δ(x,y)

(
d(x′,y′)

)
.

Detailed balance requires, as an identity of measures,

π(x,y)K
(
(x,y),d(x′,y′)

)
= π(x′,y′)K

(
(x′,y′),d(x,y)

)
.

Equivalently, for any bounded test function ϕ ,∫
π(x,y)

[
α(x,y)ϕ

(
g(x,y)

)
+
(
1−α(x,y)

)
ϕ(x,y)

]
dxdy =

∫
π(x,y)ϕ(x,y)dxdy

=⇒
∫

π(x,y)α(x,y)ϕ
(
g(x,y)

)
dxdy =

∫
π(x,y)α(x,y)ϕ(x,y)dxdy.

Apply the change of variables (u,v) = g(x,y) (so (x,y) = g(u,v)). If g is a C1 diffeomorphism
(in particular, an involution), then dxdy =

∣∣detJg(u,v)
∣∣dudv, and the left-hand side becomes∫

π
(
g(u,v)

)
α
(
g(u,v)

)
ϕ(u,v)

∣∣detJg(u,v)
∣∣dudv.

Since the equality holds for all ϕ , we must have for a.e. (u,v), π
(
g(u,v)

)
α
(
g(u,v)

)∣∣detJg(u,v)
∣∣ =

π(u,v)α(u,v). Renaming (u,v) 7→ (x,y) gives the symmetry condition

π(x,y)α(x,y) = π
(
g(x,y)

)
α
(
g(x,y)

)∣∣detJg(x,y)
∣∣. (A.1)

A standard solution of (A.1) is the Metropolis rule

α(x,y) = min

{
1,

π
(
g(x,y)

)∣∣detJg(x,y)
∣∣

π(x,y)

}
, (A.2)

which is exactly (3.5).

A.4 Flow-Enhanced Acceptance Criterion 57

A.4 Flow-Enhanced Acceptance Criterion

This appendix derives the flow-enhanced acceptance criterion ∆flow used in our flow-based
PT swap proposals (3.7).

Proof. For a dimension-preserving, differentiable, involutive deterministic proposal g (i.e.
g◦g = id), the MH ratio is

R(x,y) =
π(g(x,y))

∣∣detJg(x,y)
∣∣

π(x,y)
.

as shown in A.3. The Jacobian of g has block form

Jg(x,y) =

[
0 JT−1

θ

(y)

JTθ
(x) 0

]
, ⇒

∣∣detJg(x,y)
∣∣= ∣∣detJTθ

(x)
∣∣ ∣∣detJT−1

θ

(y)
∣∣,

(the swap contributes only a sign, removed by the absolute value). Therefore

R(x,y) =
plow(T−1

θ
(y)) phigh(Tθ (x))

plow(x) phigh(y)
·
∣∣detJTθ

(x)
∣∣ ∣∣detJT−1

θ

(y)
∣∣.

Taking logs yields ∆flow from Equation (??). For Boltzmann densities, the normalisers cancel
and

log
plow(T−1

θ
(y)) phigh(Tθ (x))

plow(x) phigh(y)
=−βlowU(T−1

θ
(y))−βhighU(Tθ (x))+βlowU(x)+βhighU(y),

which gives Equation (3.7).

58 Proofs & Supplementary Mathematics

A.5 Proof of Lemma 3.1.1

This appendix proves Lemma 3.1.1, i.e., that the Metropolis–Hastings kernel with the
deterministic involutive proposal (x,y) 7→ g(x,y) satisfies detailed balance with respect to
the product target density π(x,y) = pβk

(x) pβk+1
(y).

Proof. Fix (x,y) ∈ Ω×Ω and write (x′,y′) = g(x,y). Off the diagonal
(
(x′,y′) ̸= (x,y)

)
, the

deterministic proposal moves only along the pair (x,y)↔ (x′,y′), so it suffices to verify the
pairwise flux symmetry

π(x,y)α(x,y) = π(x′,y′)
∣∣detJg(x,y)

∣∣α(x′,y′).

Define the local ratio

r(x,y) :=
π(x′,y′)

∣∣detJg(x,y)
∣∣

π(x,y)
.

Because g is an involution and Jg(x′,y′) is the inverse of Jg(x,y), we have r(x′,y′) = 1/r(x,y).
The Metropolis rule is

α(x,y) = min{1, r(x,y)}, α(x′,y′) = min{1, r(x′,y′)}= min{1, 1/r(x,y)}.

Case 1: r(x,y)≥ 1. Then α(x,y) = 1 and α(x′,y′) = 1/r(x,y), so

π(x,y)α(x,y) = π(x,y) = π(x′,y′)
∣∣detJg(x,y)

∣∣ 1
r(x,y)

= π(x′,y′)
∣∣detJg(x,y)

∣∣α(x′,y′).

Case 2: r(x,y)≤ 1. Then α(x,y) = r(x,y) and α(x′,y′) = 1, so

π(x,y)α(x,y) = π(x,y)r(x,y) = π(x′,y′)
∣∣detJg(x,y)

∣∣= π(x′,y′)
∣∣detJg(x,y)

∣∣α(x′,y′).

Thus the off-diagonal fluxes match. The diagonal part
(
(x′,y′) = (x,y)

)
is trivially symmetric,

hence detailed balance holds with respect to π .

A.6 KL ↔ NLL (positions only). 59

A.6 KL ↔ NLL (positions only).

Write the Boltzmann densities as pβ (x) = Z−1
β

e−βU(x). For an invertible Tθ : Ω → Ω, the
pushforwards have densities

qθ (y)≡ (Tθ ♯Pβk
)(dy)/dy = pβk

(
T−1

θ
(y)

)∣∣detJT−1
θ

(y)
∣∣,

rθ (x)≡ (T−1
θ

♯Pβk+1
)(dx)/dx = pβk+1

(
Tθ (x)

)∣∣detJTθ
(x)

∣∣.
By definition and separating out θ–independent parts, we derive the rirst KL term as follows

DKL
(
Pβk+1

∥Tθ ♯Pβk

)
=

∫
pβk+1

(y) log
pβk+1

(y)
qθ (y)

dy

=
∫

pβk+1
(y) log pβk+1

(y)dy︸ ︷︷ ︸
const. w.r.t. θ

−
∫

pβk+1
(y) logqθ (y)dy

= const. − Ey∼Pβk+1

[
log pβk

(
T−1

θ
(y)

)
+ log

∣∣detJT−1
θ

(y)
∣∣]

= const. − Ey∼Pβk+1

[
−βkU

(
T−1

θ
(y)

)
− logZβk

+ log
∣∣detJT−1

θ

(y)
∣∣]

= Ey∼Pβk+1

[
βkU

(
T−1

θ
(y)

)
− log

∣∣detJT−1
θ

(y)
∣∣] + const.

Analogously, we can derive the second KL term

DKL
(
Pβk

∥T−1
θ

♯Pβk+1

)
=

∫
pβk

(x) log
pβk

(x)
rθ (x)

dx

= const. − Ex∼Pβk

[
log pβk+1

(
Tθ (x)

)
+ log

∣∣detJTθ
(x)

∣∣]
= const. − Ex∼Pβk

[
−βk+1U

(
Tθ (x)

)
− logZβk+1

+ log
∣∣detJTθ

(x)
∣∣]

= Ex∼Pβk

[
βk+1U

(
Tθ (x)

)
− log

∣∣detJTθ
(x)

∣∣] + const.

Summing the two directions

LKL(θ) = DKL
(
Pβk+1

∥ Tθ ♯Pβk

)
+DKL

(
Pβk

∥ T−1
θ

♯Pβk+1

)
= Ex∼Pβk

[
βk+1U

(
Tθ (x)

)
− log

∣∣detJTθ
(x)

∣∣]+Ey∼Pβk+1

[
βkU

(
T−1

θ
(y)

)
− log

∣∣detJT−1
θ

(y)
∣∣]

+ const.

Thus, minimizing LKL is equivalent (up to θ–independent constants) to minimizing the
bidirectional NLL shown above, i.e., aligning Tθ ♯Pβk

with Pβk+1
and T−1

θ
♯Pβk+1

with Pβk
.

Appendix B

Dataset Quality

We validate the physical realism and statistical quality of our molecular datasets to ensure
that subsequent flow training operates on physically meaningful data. Table B.1 reports core
statistics across nine dipeptide systems at T = 300.0 K. As expected, energy means scale
with molecular size and chemical complexity, while standard deviations track conformational
flexibility and the strength of electrostatic interactions in each system.

Table B.1 Dataset Statistics Summary

Peptide System N_atoms Energy Mean (kJ/mol) Energy Std (kJ/mol)

AA 23 −426.6 22.6
AK 35 −559.9 24.9
AS 24 −554.6 20.6
SS 25 −637.9 21.2
KK 47 −610.9 26.3
SK 36 −622.6 34.7

SA 24 −489.4 19.8
KA 35 −530.4 21.5
KS 36 −582.1 27.3

Figure B.1 shows that the energy histograms exhibit the expected temperature dependence:
higher mean energies and broader spreads at elevated temperatures. The systematic broaden-
ing from T = 300.0 K to T = 1000 K indicates proper equilibration and adequate exploration
of configurational space at each replica.

61

(a) AA Energy Distributions (b) AK Energy Distributions (c) AS Energy Distributions

Fig. B.1 Energy distribution histograms across temperature replicas.

Ramachandran analyses further confirm conformational realism across temperatures. For
AA, the φ–ψ distributions concentrate in canonical basins at the low–temperature replica
(T = 300.0 K) and expand at T = 1000.0 K while retaining their underlying structure,
consistent with enhanced fluctuations rather than unphysical sampling (Figure B.2).

(a) AA at T = 300.0 K (Low Temperature) (b) AA at T = 1000.0 K (High Temperature)

Fig. B.2 Ramachandran plots for AA at low and high temperature replicas.

Taken together, these checks indicate that the datasets are physically plausible, statistically
well-sampled, and pose a meaningful challenge for enhanced sampling methods.

	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Contributions
	1.2 Outline

	2 Background
	2.1 Why sampling molecular conformations?
	2.2 Classical MCMC Methods
	2.2.1 Markov-Chain Formalism
	2.2.2 Local Kernels: MH, MALA, HMC
	2.2.3 Parallel Tempering

	2.3 Neural Transports
	2.3.1 Transport Paradigm
	2.3.2 Normalizing Flows
	2.3.3 Diffusion Models
	2.3.4 Flow Matching

	2.4 Graph Neural Networks
	2.4.1 Molecular Representation
	2.4.2 Neural Architectures

	2.5 Related Work
	2.6 Summary

	3 Methodology
	3.1 Problem Formulation
	3.2 Architectures
	3.2.1 PTSwapFlow
	3.2.2 PTSwapGraphFlow
	3.2.3 PTSwapTransformerFlow

	3.3 Molecular Symmetries
	3.4 Learning Objective
	3.5 Training
	3.5.1 Optimization
	3.5.2 Data Pipeline

	3.6 Summary

	4 Experiments and Results
	4.1 Preliminaries
	4.2 Dataset Generation
	4.3 Swap Acceptance Rate (SAR)
	4.4 Symmetry
	4.5 Attention and Adjacency
	4.6 Energy Validation
	4.7 Ramachandran Coverage
	4.8 Summary

	5 Conclusion
	5.1 Limitations
	5.2 Future Work

	Appendix A Proofs & Supplementary Mathematics
	A.1 MH kernel satisfies detailed balance
	A.2 2D Affine Coupling Layer Example
	A.3 MH acceptance rate with deterministic proposal
	A.4 Flow-Enhanced Acceptance Criterion
	A.5 Proof of Lemma 3.1.1
	A.6 KL NLL (positions only).

	Appendix B Dataset Quality

